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Abstract

For overlapping-generations models with multiple assets and with-
out labour, welfare assessments of equilibrium allocations depend on
whether the certainty equivalents of the one-period-ahead marginal
rates of return on assets that are held are larger or smaller than the
population growth rate. Conditional on the period and the history up
to that period, the equilibrium values of these certainty equivalents are
the same for all assets held and equal to the riskless rate if a riskless
asset is held. If population growth is uncertain, the standard of com-
parison is the certainty equivalent of the population growth rate when
interpreted as the marginal rate of return on an additional asset.
Key Words: Dynamic Ineffi ciency, overlapping-generations models,

First Welfare Theorem, certainty-equivalents criterion.
JEL: D15, D61, E21, E22, E62, H30.

∗Revision of Hellwig (2023a). Whereas this paper considers the implications of asset
multiplicity on effi ciency assessments in overlapping-generations models, Hellwig (2024),
considers the implications of productivity shocks affecting uncertain wage incomes. Both
papers are based on material in Hellwig (2021). I thank Andrew Abel, Gaetano Bloise,
Subir Chattopadhyay, Christian Hellwig, Greg Mankiw, Pietro Reichlin, Larry Summers,
Christian von Weizsäcker, and Richard Zeckhauser for helpful exchanges and advice. The
usual caveat applies.
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1 Introduction

In overlapping-generations models with infinite time horizons, equilibrium
allocations under laissez-faire need not be Pareto effi cient.1 Such “dynamic
ineffi ciency” is often tied to the question whether the real rate of return r
on capital is smaller or larger than the real growth rate g of the economy. If
r is less than g, effi ciency can be improved by reducing capital investments
in all periods and using the resources saved to provide for the consumption
of old participants. The growth rate g comes in as the “rate of return”from
participating in a scheme under which agents make contributions to older
participants’consumption when young and receive contributions from the
next generation of young participants when old. If r < g, participation in
such a scheme is advantageous because the rate of return on contributions
to the scheme exceeds the rate of return on capital investment.

As stated, the argument presumes that assets are riskless so that in
equilibrium they all bear the same rate of return. The argument is no
longer clear, however, if some assets, or even all, are risky so that their rates
of return are given by random variables, rather than real numbers. What
are we to conclude if the equilibrium rate of return on safe assets is smaller
than the growth rate of the economy and the expected rates of return on
risky assets are larger than the growth rate of the economy?

For a particular class of overlapping-generations models, this paper shows
that the relevant variable for comparison with the growth rate is given by
the certainty equivalent of the uncertain marginal rate of return on any risky
asset that is actually held. By standard portfolio choice considerations, the
equilibrium value of this certainty equivalent is the same for all assets that
are held in positive amounts. If this equilibrium value of the certainty equiv-
alent of the uncertain marginal rates of return on risky assets that are held
falls short of the population growth rate, the equilibrium allocation is not
Pareto effi cient; if it exceeds the population growth rate, the equilibrium
allocation is Pareto effi cient.2

Thus, with uncertainty about asset returns, the r versus g comparison
is as relevant as in the certainty case. The only change is that r must be
thought of as the common certainty equivalent of the uncertain marginal

1The argument goes back to Allais (1947, Appendix 2), Samuelson (1958), and Dia-
mond (1965). Blanchard (2019), as well as von Weizsäcker (2014) and Weizsäcker and
Krämer (2019/2022), have provided the discussion with a new impetus.

2For a particular model with one riskless and one risky asset, a special case of this
finding is already contained in Hellwig (2022). The present paper distills the general
principle.
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rates of return on assets that are held. This criterion also coincides with the
so-called dominant-root criterion of Peled and Aiyagari (1991).3

If one of the assets is riskless and positive amounts of this asset are held,
the common value of the certainty equivalent of the marginal rates of return
on risky assets must be equal to the marginal rate of return on this riskless
asset. In this case, the r versus g comparison can rely on the marginal rate
of return on the riskless asset.

I also consider the case where the population growth rate is uncertain.
Under the assumption that population growth rates from one period to the
next are given by a sequence of independent and identically distributed
random variables, I show that, for the class of models under consideration,
the assessment of dynamic effi ciency of an equilibrium allocation hinges on
whether the common certainty equivalent of the uncertain marginal rates
of return on assets that are held is larger or smaller than the certainty
equivalent of the marginal rate of return on a fictitious asset whose uncertain
rate of return is equal to the population growth rate.

The results of this paper contradict a claim of Abel et al. (1989, pp. 13f.)
that certainty equivalents of marginal rates of return on assets being smaller
than growth rates is not a suffi cient condition for dynamic ineffi ciency. These
authors, however, do not prove their claim. They merely support it with an
example involving an infinitely-lived representative consumer and a single
risky asset. Such an example cannot tell us anything about overlapping-
generations economies.4 Nor can it tell us anything about equilibria in
which riskless assets are held in positive amounts.5

Abel et al. (1989) also have a theorem on overlapping-generations mod-
els. This theorem gives suffi cient conditions for dynamic effi ciency and for
dynamic ineffi ciency in terms of the sign of net payment flows between the
consumer sector and the producer sector of the economy, without any ex-
plicit reference to rates of return on assets. However, these conditions are
far from necessary. For the class of models considered here, they are much
stronger than the suffi cient conditions I give in terms of the r versus g com-

3See also Manuelli (1990), Chattopadhyay and Gottardi (1999), Demange and Laroque
(1999, 2000), Chattopadhyay (2001), and Bloise and Reichlin (forthcoming).

4Despite this lack of a serious foundation, the claim of Abel et al. (1989) in presuming
that assessments of dynamic ineffi ciency must consider aggregates of returns on all assets,
rather than merely the riskless rate, has been very influential. See, e.g., Homburg (2014),
Geerolf (2018), Yared (2019), Acharya and Droga (2020), Reis (2020), Bloise and Reichlin
(forthcoming).

5 In the example of Abel et al. (1989), as in the model of Bloise and Reichlin (forthcom-
ing), riskless assets could be constructed synthetically, as packages of contingent claims,
but equilibrium holdings of these synthetic assets are zero.
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parison. In fact, the "gap" between my suffi cient conditions for dynamic
ineffi ciency and my suffi cient conditions for dynamic effi ciency concerns only
the case r = g.6

The class of models I consider is special in that there is no labour and
therefore no market for labour. At any date, output is produced with capital
that belongs to members of the old generation. This output makes up the
old generation’s real income at that date. In contrast to most other papers
with this setup, e.g. Bloise and Reichlin (forthcoming), I assume that there
are different kinds of real capital, with different return risks. Members
of the young generation have a commodity endowment that they can use
for immediate consumption and for investments in the different kinds of
capital.7 Because the different kinds of capital involve different return risks,
the young face a nontrivial problem of portfolio choice.

In Hellwig (2024), I also consider the model of Demange and Laroque
(2000) and Blanchard (2019), in which there are active labour markets be-
cause production in any period relies on a combination of the young people’s
labour with the old people’s assets. In this model, the r versus g comparison
at any date t depends on the wage rate at this date, which in turn depends
on the productivity shock at this date. The uncertainty about productiv-
ity at date t affects not only the returns on investments at date t − 1 but
also the wage incomes of the young at date t, and these wage incomes in
turn affect consumption and investment of the young at date t. High wage
rates at t allow the young to make large investments. If investments are
large, marginal rates of return on investments are likely to be low and so
is the equilibrium value of the certainty equivalent of these rate of return.
More generally, the certainty equivalents of the uncertain marginal rates of
return on investments, and therefore the r vs. g comparison, and any date
t depends on the wage rate and, indirectly, the productivity shock at this
date.

The companion paper studies the implications of this dependence in an
economy with a single asset and gives a more general formulation of the r
vs. g criterion under uncertainty. This more general criterion compares the

6The literature on the dominant-root criterion fills this gap by showing that, if prefer-
ences are strictly quasi-concave, with Gaussian curvature bounded away from zero, laissez-
faire allocations with r = g are effi cient. See, e.g., Chattopadhyay and Gottardi (1999).
The need for strict quasi-concavity indicates that the economics of the argument in this
case is slightly more complicated. For simplicity, I only analyse the cases r < g and r > g.

7A generalization giving the young generation a labour endowment that they can use
for their own production of current consumption and investments would be trivial but in
this generalization there also would be no market for labour.
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conditional certainty equivalents of the uncertain marginal rates of return
on assets that are held to the conditional certainty equivalents of the uncer-
tain implicit marginal rates of return on social security contributions. The
analysis there shows that the "g" in the analysis of this paper, or in other
versions of the r vs. g criterion is merely a stand-in for the implicit rate of
return on social security contributions.

The plan of the paper is as follows: Section 2 introduces the basic model.
Given that labour plays no role, there is no direct trade between the two
generations that are alive in any period t. I define and characterize the
autarky allocation and show that it can be generated as an equilibrium
allocation in a sequence of markets such that, in each period, there is a
complete system of one-period-ahead contingent-claims markets.

Section 3 contains the main result on the effi ciency of this equilibrium al-
location. Following the literature, I use a concept of interim Pareto effi ciency
where each generation t assesses a change of allocation from an interim per-
spective, knowing the history of productivity shocks up to and including t.8

This information assumption eliminates the possibility of Pareto improve-
ments from having people born in period t take over some of the return
risks of people born in period t− 1. The equilibrium allocation is shown to
be interim Pareto effi cient if the common certainty equivalent of the uncer-
tain marginal rates of return on assets that are held exceeds the population
growth rate; the equilibrium allocation is interim Pareto dominated if this
certainty equivalent is smaller than the population growth rate.

Section 4 generalizes the analysis to allow for growth rates given by
independent and identically distributed random variables. In this case, the
role of the growth rate in the effi ciency criterion is taken by the certainty
equivalent of the uncertain growth rate when interpreted as a rate of return
on an asset.

Section 5 provides further perspectives on the main result. Section 5.1
shows that this result implies the theorem of Abel et al. (1989) that was
mentioned above. Section 5.2 shows that the result can be interpreted as a
failure of the First Welfare Theorem for competitive equilibria in a complete
market system ex ante when agents’ identities include the histories up to
and including their births. In such a system, the autarky allocation is a
competitive equilibrium allocation and is effi cient if the value of aggregate

8This is the terminology of the literature on incentive mechanisms, as well as Demange
and Laroque (1999, 2000). Peled and Aiyagari (1991), Chattopadhyay and Gottardi (1999)
and Chattopadhyay (2001, 2008) refer to "conditional" Pareto effi ciency. Demange and
Laroque (1999) refer to conditional Pareto effi ciency when potentially improving alloca-
tions are required to be stationary.
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consumption at equilibrium prices is finite and ineffi cient if the value of
aggregate consumption at equilibrium prices is unbounded. This criterion
is equivalent to the criterion in the main result of this paper..

Formal proofs are given in the appendix.

2 An Overlapping-Generations Model with Mul-
tiple Assets and no Labour

Consider an economy in periods t = 1, 2, ... In each period t, there is a
single produceable good. This good serves for consumption and investments.
There are I types of investments. For i = 1, ..., I, an investment kti of
type i in period t generates an output fi(At+1, kti) in period t + 1, where
At+1 is the realization of a nondegenerate random variable Ãt+1 with values
in a finite set A = {a1, ..., aS}. This realization only becomes known in
period t+1. After production, investments of all types are fully depreciated.
For any a ∈ A, the return functions fi(a, ·), i = 1, ..., I, are continuously
differentiable, nondecreasing, and concave, with fi(a, 0) = 0. Moreover, for
any a ∈ A, f ′i(a, 0) > 0 for at least one i ∈ {1, ..., I}.

In each period t, a new generation of Nt people is born and lives for two
periods. There are also N0 = N old people in period 1. I assume that the
population grows at a constant rate n, so Nt = (1 + n)tN0 for all t.

For simplicity, I assume that, except for the old people in period 1, all
people have the same characteristics. A person born in period t ≥ 1 has
an initial endowment E > 0 of the period t good and no endowment of the
period t′ good for t′ 6= t. Moreover, this person is interested in the utility

u(ct1) + v(ct2) (2.1)

that is obtained from consuming ct1 in period t and ct2 in period t + 1.
The utility functions u(·) and v(·) are assumed to be twice continuously
differentiable, increasing and concave, with u′(0) = ∞ and v′(0) = ∞. An
old person in period 1 has past investments k01, ..., k

0
I and is interested in the

utility v(c02).
In the absence of trade, a person born in period t ≥ 1 chooses a first-

period consumption level ct1, and investment levels k
t
i , i = 1, ..., I under the

constraint

ct1 +

I∑
i=1

kti = E. (2.2)
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The person also chooses a plan ct2(·) for second period consumption subject
to the constraint that

ct2(as) =
I∑
i=1

fi(as, k
t
i) (2.3)

for s = 1, ..., S. An old person in period 1 just has the consumption

c02(as) =

I∑
i=1

fi(as, k
0
i )

for s = 1, ..., S. I assume that
∑I
i=1 fi(as, k

0
i ) > 0 for all s.

The parameters Ã1, Ã2, ... are assumed to be independent and identically
distributed, with strictly positive probabilities p1, ..., pS . for the outcomes
a1, ..., aS . A person born in period t ≥ 1 thus gets the expected utility

u(ct1) +
S∑
s=1

ps · v(ct2(as)) (2.4)

from the plan (ct1, k
t
1, ..., k

t
I , c

t
2(·)).

An autarky allocation is an array of plans (ct1, k
t
1, ..., k

t
I , c

t
2(·)) for t =

1, 2, ... such that, for each t, the plan (ct1, k
t
1, ..., k

t
I , c

t
2(·)) maximizes (2.4)

subject to the constraints (2.2) and (2.3). Given the assumptions imposed
on utility functions and return functions, the following lemma is immediate.

Lemma 2.1 There is a unique autarky allocation. For each generation t ≥
1, the autarky allocation involves the unique plan (ca1, k

a
1 , ..., k

a
I , c

a
2(·)) that

satisfies the first-order conditions

u′(ca1) ≤
S∑
s=1

ps · f ′i(as, kai ) · v′(ca2(as) (2.5)

for i = 1, ...I, as well as the constraints (2.2) and (2.3), where, for any i,
(2.5) holds as an equation unless kai = 0. This plan satisfies ca1 > 0 and
ca2(as) > 0 for all s.

The autarky allocation can be implemented as an equilibrium allocation
in a sequence of complete one-period-ahead market systems. For suppose
that, in period t, there is a market system in which consumers can buy
state-contingent claims for period t+ 1 consumption at prices

ψ(as) :=
ps · v′(ca2(as))

u′(ca1)
, s = 1, ..., S, (2.6)
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and they can sell the period t good to firms at a price qt = 1. These firms
acquire the period t good at the price qt = 1 in order to make investments,
and they dispose of the state-dependent outputs from these investments by
selling state-contingent claims for the period t+ 1 good at the prices ψ(as),
s = 1, ..., S. The profits of these firms are distributed to people of generation
t.

Lemma 2.2 For any t, the autarky consumption plan (ct1, c
t
2(·)) = (ca1, c

a
2(·))

maximizes the expected utility (2.4) of a person born in period t subject to
the budget constraint

ct1 +

S∑
s=1

ψ(as)c
t
2(as) = E + Πt, (2.7)

where

Πt = max
kt1,...,k

t
I

[
S∑
s=1

ψ(as)

I∑
i=1

fi(as, k
t
i)−

I∑
i=1

kti

]
(2.8)

and, moreover, the maximum in (2.8) is attained at the autarky investment
plan (kt1, ..., k

t
I) = (ka1 , ..., k

a
I ).

In any period, old agents play no active role because they do not trade.
They merely consume the returns on the contingent claims they acquired in
the preceding period. From Lemma 2.2, one therefore obtains the following
result.

Proposition 2.3 Suppose that, in each period t, there is a market system
of the sort considered in Lemma 2.2. A sequence {qt}∞t=1 of price vectors
satisfying

qt = (1, ψ(a1), ..., ψ(aS)) (2.9)

for all t and all histories (A1, ..., At) up to t, supports the autarky allocation
as a rational-expectations equilibrium allocation.

The sequence of markets in this proposition is not equivalent to a com-
plete market system ex ante in which claims on all contingencies can be
traded. In a complete market system ex ante, there would be active trading
of contingent claims on the period t goods that allows people born in period
t − 1 to share some of their return risk with people born in period t. Such
risk sharing cannot take place if people born in period t know the realization
of Ãt when they enter the market.
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3 Welfare Assessments

For welfare assessments, I take an interim perspective where each generation
t assesses a change of allocation on the basis of the information that it has,
assuming that it knows the history A1, ..., At of productivity parameters
up to t. From this perspective, an allocation is interim Pareto-preferred to
another if, conditioning on the information that is available to agents when
they take their decisions and regardless of the value that information may
take, no participant is worse off and some participants are strictly better
off under the first allocation than under the second allocation. The interim
perspective avoids a trivial finding of ineffi ciency due to the absence of risk
sharing between generations.

To assess the interim Pareto effi ciency of the autarky allocation, I con-
sider the welfare impact of reducing the first-period consumption of agents
born in period t by ∆ > 0 and increasing second-period consumption of
these agents by (1 + n)∆ while leaving everything else unchanged. With a
population growth factor 1 + n, this change is obviously feasible. For a per-
son born in period t expected utility shifts from u(ca1) +

∑S
s=1 ps · v(ca2(as))

to u(ca1 −∆) +
∑S
s=1 ps · v(ca2(as) + (1 + n)∆). For small ∆, the change in

expected utility is approximately equal to[
−u′(ca1) +

S∑
s=1

ps · (1 + n) · v′(ca2(as))
]
·∆ = −u′(ca1)

[
1− (1 + n)

S∑
s=1

ψ(as)

]
·∆,

(3.1)
where ψ(as) is given by (2.6). If the term in brackets is positive, the inter-
vention considered lowers welfare; if this term is negative, the intervention
raises welfare. In the latter case, the new allocation Pareto dominates the
autarky allocation, in the former case, it does not dominate the autarky
allocation.

Proposition 3.1 If (1 + n)
∑S
s=1 ψ(as) < 1, the autarky allocation is in-

terim Pareto effi cient. If (1+n)
∑S
s=1 ψ(as) > 1, the autarky allocation fails

to be interim Pareto effi cient.

The second part of Proposition 3.1 follows from the argument just given.
That argument also shows that, if (1 + n)

∑S
s=1 ψ(as) < 1, the specified

intervention, with a fixed ∆, does not provide a Pareto improvement. A
more general argument is needed, however, in order to show that in this
case no intervention at all provides for a Pareto improvement, not even a
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time-dependent or state-dependent intervention that provides for the sharing
of risks from the random variable Ãt+1 between generations t and t+ 1.

The interim effi ciency or ineffi ciency of the autarky allocation thus de-
pends on whether the sum

∑S
s=1 ψ(as) is less than or greater than 1

1+n . To
understand what this comparison is about, it is useful to recall that, for
any t and any s, ψ(as) is the period t price of a claim on the period t + 1
good contingent on the event Ãt+1 = as expressed in units of the period t
good. The sum

∑S
s=1 ψ(as) is therefore the period t price of a non-contingent

claim on the period t+ 1 good expressed in units of the period t good. The
proposition asserts that the interim effi ciency or ineffi ciency of the allocation
depends on whether this price is less than or greater than 1

1+n .
The condition in Proposition 3.1 can be interpreted as a version of the

so-called dominant-root or unit root criterion of Aiyagari and Peled (1991),
Chattopadhyay and Gottardi (1999), Demange and Laroque (1999, 2000),
Chattopadhyay (2001), and Bloise and Reichlin (forthcoming).9 To see the
relation, consider the strictly positive S × S matrix Ψ = (ψs,s+), where, for
any s and s+ in {1, ..., S},

ψs,s+ := (1 + n) · ψ(as+),

regardless of s. One easily verifies that this matrix, whose rows are all equal,
has eigenvalues

λ∗(Ψ) = (1 + n) ·
S∑

s+=1

ψ(as+),

with eigenvector (1, ..., 1), and 0, with an S − 1-dimensional space of eigen-
vectors that equals the null space of Ψ. By Proposition 3.1 therefore, the
effi ciency of ineffi ciency of the autarky allocation depends on whether the
maximal eigenvalue of Ψ is less than or greater than one. This is exactly
the dominant-root criterion.10

Proposition 3.1 makes no reference to assets or asset returns. Rates
of return enter implicitly because the equilibrium price system depends on
the allocation and the allocation in turn reflects the available investment
opportunities. Using (2.6) and Lemma 2.1, one finds that, for any asset i

9See also Manuelli (1990), who uses a somewhat different formulation.
10Under the additional assumption that the participants’indifference curves in (c1, c2)-

space have non-zero, bounded Gaussian curvature, the cited papers also establish interim
effi ciency if λ∗(Ψ) = 1.
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satisfying kai > 0, one has

1∑S
s=1 ψ(as)

=
u′(c

a)
1∑S

s=1 ps · v′(ca2(as))
=

∑S
s=1 ps · f ′i(as, kai ) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
.

(3.2)
Upon combining this finding with Proposition 3.1, one obtains:

Proposition 3.2 The autarky allocation fails to be interim Pareto effi cient
if ∑S

s=1 ps · f ′i(as, kai ) · v′(ca2(As))∑S
s=1 ps · v′(ca2(as))

< 1 + n (3.3)

for all i. The autarky allocation is interim Pareto effi cient if∑S
s=1 ps · f ′i(as, kai ) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
> 1 + n (3.4)

for all i satisfying kai > 0.

The term on the left-hand side of (3.3) and (3.4) is a marginal-utility-
weighted expectation of the marginal return random variable f ′i(Ãt+1, k

a
i ) for

asset i. This marginal-utility-weighted expectation is the same for all assets
that are actually held. It can be interpreted as the certainty-equivalent of
the marginal return f ′i(Ãt+1, k

a
i ), i.e., as that value of the marginal return on

a (possibly fictitious) riskless asset at which the investor would be indifferent
between a marginal investment in asset i and in the riskless asset.

The term 1+n on the right-hand side of (3.3) and (3.4) can be interpreted
as a rate of return that is implicit in participants’s paying ∆ in the first
period of their lives and receiving (1 + n)∆ in the second period of their
lives. Proposition 3.2 asserts that, if this implicit rate of return exceeds the
common value of the certainty equivalents of the marginal returns on assets,
the autarky allocation is Pareto dominated; if this implicit rate of return
is smaller than than the common value of the certainty equivalents of the
marginal returns on assets, the autarky allocation is Pareto effi cient.

For an asset that satisfies

f ′i(as, k
a
i ) = f̂ ′i(k

a
i ) (3.5)

for some function f̂i and all s, the left-hand side of (3.3) and (3.4) is simply
equal to f̂ ′i(k

a
i ).
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Corollary 3.3 Assume that the autarky allocation satisfies kai > 0 for some
asset i that is riskless, i.e., that satisfies (3.5) for all s. Then this allocation
is interim Pareto effi cient if f̂ ′i(k

a
i ) > 1 + n and interim Pareto-dominated

if f̂ ′i(k
a
i ) < 1 + n.

Corollary 3.3 restates the old result that the effi ciency or ineffi ciency of
a competitive-equilibrium allocation in an overlapping-generations economy
depends on whether the marginal rate of return on a riskless asset that is held
in positive amounts exceeds the growth rate of the economy or falls short of
it. Contrary to a claim in Abel et al. (1989), the criterion for effi ciency and
ineffi cieny is specified only in terms of the marginal rate of return on the
safe asset, seemingly without regard to the rates of return on risky assets.
The marginal rates of return on risky assets come in implicitly because, by
portfolio choice considerations, the certainty equivalents of marginal rates
of return must be the same for all assets that are held in positive amounts.
In particular, they must be equal to the riskless rate if there is a riskless
asset that is held. If this rate lower than the growth rate and yet the
riskless asset is held, the equilibrium allocation is ineffi cient even though
the expected returns on risky assets may be very large.11

The follows remark shows that that there exist constellations in which
the assumption kas > 0 is satisfied so Corollary 3.3 is not vacuous.

Remark 3.4 Suppose that asset 1 is riskless, so that f1(as, ·) = f̂1(·) for
some function f̂1 and all s. Then ka1 > 0 if there exists a state in which the
returns on all other assets are zero, i.e., if, for some s, fj(as, kaj ) = 0 for all
j 6= 1. The condition ka1 > 0 is also satisfied if limkj→∞ f

′
j(as, kj) = 0 for all

j 6= 1 and all s and the endowment E is very large.

The first part of Remark 3.4 concerns constellations in which safe invest-
ments are needed as protection against the positive-probability event that
risky investments may be completely lost. The second part concerns con-
stellations in which endowments are so large that, without safe investments,
11Abel et al. (1989) overlook this point because they have only a single real asset and

this asset is risky, so they do not consider the implications of a riskless asset’s being
held in positive amounts. Bloise and Reichlin (forthcoming) has the same shortcoming.
The paper criticizes a previous version of Corollary ?? in Hellwig (2021) without however
considering the implications of optimal portfolio choice for the assessment of dynamic
ineffi ciency in the presence of a riskless asset that is held in positive amounts.
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the marginal returns on risky investments would be so low (with probability
one) that, at the margin, these investments would be dominated by safe
investments.

If there is no riskless asset, one can still define a "shadow" safe rate of
return

Ra :=
1∑S

s=1 ψ(as)
=

u′(c
a)
1∑S

s=1 ps · v′(ca2(as))
(3.6)

as that value of the rate of return on a fictitious safe asset at which agents
would be exactly indifferent about a marginal investment in this asset. This
number is given by the consumers’marginal rate of substitution between
non-contingent changes in consumption in the first and second periods of
their lives.

Corollary 3.5 The autarky allocation is Pareto effi cient if Ra > 1 +n and
Pareto-dominated if Ra < 1 + n.

4 Uncertainty about Population Growth

The analysis so far has made extensive use of the assumption that the pop-
ulation growth rate is a known constant. There is an easy generalization,
however, to the case where the population growth rate from period t to
period t + 1 is the realization of a random variable ñt+1 and the random
variables ñ1, ñ2, ... are independent and identically distributed.12 Without
loss of generality, one can write

ñt = ν(Ãt), (4.1)

so that the state of the world in period t determines not only the returns
on assets held from period t − 1 but also the size of generation t relative
to generation t − 1. The autarky allocation is the same as before, but the
transfer scheme considered in Section 3 now takes the form of a payment
∆ > 0 in period t by a person born in that period and a receipt (1 + ñt+1)∆
by that person in period t + 1. Given this modification, for small ∆, the

12 In a model with a single real asset, Demange and Laroque (1999, 2000) also allow
for stochastic population growth rates, however, without considering the interpretation of
growth rates as rates of return.
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effect of such a scheme on the expected utility of a person born in period t
now takes the form[

−u′(ca1) +

S∑
s=1

ps · (1 + ν(as)) · v′(ca2(as))
]
·∆, (4.2)

which specializes to (3.1) if ν(as) = n, regardless of as. Along the same lines
as before, one obtains the following generalization of Proposition 3.2:

Proposition 4.1 In the model with uncertain population growth given by
4.1), the autarky allocation fails to be interim Pareto effi cient if∑S

s=1 ps · f ′i(as, kai ) · v′(ca2(as))∑S
s=1 ps · v′(ca2(as))

<

∑S
s=1 ps · (1 + ν(as)) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
(4.3)

for all i. The autarky allocation is interim Pareto effi cient if∑S
s=1 ps · f ′i(as, kai ) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
>

∑S
s=1 ps · (1 + ν(as)) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
(4.4)

for all i satisfying kai > 0.

To understand this result, consider a possibly fictitious asset whose rate
of return from period t to period t + 1 is equal to the population growth
rate, so one unit of the good invested in this asset in period t yields 1+ ñt+1
in period t + 1. The term on the right-hand sides of (4.3) and (4.4) can be
interpreted as the certainty equivalent of the one-period rate of return on
this asset. The proposition assets that the interim effi ciency or ineffi ciency of
the autarky allocation depends on how the certainty equivalent of marginal
returns on assets that are held compare to the certainty equivalent of the
marginal returns on this fictitious asset. The underlying rationale is the
same as before: The transfer scheme considered in (4.2) can be interpreted
in terms of an "investment" ∆ in period t and a "return" (1+ñt+1) in period
t+ 1.13

13The appearance of the growth rate in the return to social security contributions reflects
the fact that individual contributions are constant. Demange and Laroque (2000) have an
example with a Cobb-Douglas production function in which contributions are proportional
to labour incomes and the population growth rate does not appear in the criterion for
effi ciency because the quantity effects of population growth on labour incomes are largely
neutralized by a decline in wage rates. For a discussion, see Hellwig (2024).
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5 Relation to the Net-Dividend Criterion of Abel
et al. (1989)

Abel et al. (1989) have another criterion for dynamic effi ciency and in-
effi ciency, which on the face of it has nothing to do with rates of return.
For any one period t, their net-dividend criterion compares the returns to
investments that are payed out to consumers in that period to the pay-
ments for new investments that consumers make in that period. In the
context of the model considered here, the comparison concerns the returns
Nt−1 · d̃t :=

∑I
i=1 fi(Ãt, k

t−1
i ) on past investments that go to the old gen-

eration in period t and the new investment Nt ·
∑I
i=1 k

t
i that is made by

the young generation in period t. According to Proposition 1 in Abel et al.
(1989), under the assumption that production exhibits stochastic constant
returns to scale, an equilibrium allocation is Pareto effi cient if, for some
ε > 0, d̃t ≥ (1 + ε)(1 + n)

∑I
i=1 k

t
i for all t with probability one, and the

allocation is Pareto dominated if, for some ε > 0, d̃t ≤ (1−ε)(1+n)
∑I
i=1 k

t
i

for all t with probability one. For the autarky allocation in the present
analysis, these conclusions are actually a special case of Corollary 3.5. This
is shown by the following result.

Proposition 5.1 Assume that production exhibits stochastic constant re-
turns to scale, i.e., that, for some functions ρ1(·), ..., ρI(·) from A to R+,

fi(as, ki) = ρi(as) · ki (5.1)

for all s and all ki > 0. Then the autarky allocation satisfies Ra > 1 + n if,
for some ε > 0,

I∑
i=1

fi(as, k
a
i ) ≥ (1 + ε)(1 + n)

I∑
i=1

kai (5.2)

for all s. It satisfies Ra < 1 + n if, for some ε > 0,

I∑
i=1

fi(as, k
a
i ) ≤ (1− ε)(1 + n)

I∑
i=1

kai (5.3)

for all s.

The proof of Proposition 5.1 makes essential use of the stationarity of
the autarky allocation. The fact that kti = kai for all t makes it possible
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to translate the net-dividend criterion into a rate-of-return criterion: Given
(5.1), (5.2) takes the form

I∑
i=1

ρi(as) · kai ≥ (1 + ε)(1 + n) ·
I∑
i=1

kai (5.4)

for all s, implying that, in all possible states of nature, the overall rate
of return on the portfolio (ka1 , ..., k

a
I ) is at least (1 + ε)(1 + n). From the

optimization conditions (2.5), one has

u′(ca1) ·
I∑
i=1

kai =
I∑
i=1

S∑
s=1

[ps · v′(c̃a2) · ρi(as) · kai ],

so the net-dividend condition (5.4) implies

u′(ca1) ·
I∑
i=1

kai ≥
S∑
s=1

ps · v′(c̃a2) · (1 + ε)(1 + n) ·
I∑
i=1

kai

and, therefore,

1 ≥
S∑
s=1

ψ(as) · (1 + ε)(1 + n)

or
Ra ≥ (1 + ε)(1 + n),

which implies interim Pareto effi ciency. Similarly, (5.3) implies that in all
possible states of nature the overall rate of return on the portfolio (ka1 , ..., k

a
I )

is at most (1− ε)(1 + n) > 1 + n, so that the optimization conditions (2.5)
yield

u′(ca1) ·
I∑
i=1

kai ≤
S∑
s=1

ps · v′(c̃a2) · (1− ε)(1 + n) ·
I∑
i=1

kai

and, therefore,
Ra ≤ (1− ε)(1 + n),

implying a failure of interim Pareto effi ciency.
Without some element of stationarity, the status of the result of Abel

et al. (1989) is unclear. Their conditions compare payouts of returns
from investments of period t − 1 with new investments of period t. Chat-
topadhyay (2008) has examples where the technology involves technical
regress, so investments decline over time. In these examples, the condi-
tion d̃t ≥ (1 + ε)(1 + n)

∑I
i=1 k

t
i holds for all t with probability one, and yet

the competitive-equilibrium allocation is Pareto-dominated.
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6 Relation to the First Welfare Theorem

"Dynamic ineffi ciency" has little to do with dynamics. "Dynamic ineffi -
ciency" reflects a breakdown of the First Welfare Theorem in certain economies
with an infinity of goods and an infinity of consumers.14 The First Welfare
Theorem asserts that, in the absence of external effects, public goods, and
the like, under quite general assumptions on preferences and technologies,
competitive equilibrium allocations are Pareto effi cient. For a breakdown
of this theorem, having a "large-square" economy with a large number of
agents (at least two for every good) as well as a large-number of goods is
crucial. The scope for a breakdown depends on the structure of the equi-
librium price system, which in turn depends on the interplay of consumer
preferences and investment opportunities. A breakdown of the First Wel-
fare Theorem can occur even if there is no investment; in this case, only
consumer preferences matter.15

In the present context, these observations are relevant even though the
sequence of markets in Proposition 2.3 is not equivalent to a complete market
system ex ante in which claims on all contingencies can be traded. The
reason is that, for a slightly modified economy, the sequence of markets in
Proposition 2.3 is equivalent to a complete market system ex ante in which
claims on all contingencies can be traded. In this modified economy, the
failure of interim Pareto effi ciency when (1 + n)

∑S
s=1 ψ(as) > 1 is in fact a

failure of the First Welfare Theorem.
The modified economy is identical to the one studied so far except that

the set of agents is expanded by treating agents born in period t as different
agents if the histories (A1, ..., At) up to period t are different.16 Thus an
agent born in period t is treated as St different agents, who differ from each
other according to the histories (A1, ..., At) ∈ At. Conditional on any one
history up to t, the set of agents in the economy at t is the same as in the
original model. However, from an ex ante perspective, this construction
eliminates the scope for using active trading of contingent claims on the
period t goods to allow people born in period t − 1 to share some of their
return risk with people born in period t. Such risk sharing cannot take place

14See, e.g., Balasko and Shell (1980), Mas-Colell et al. (1995), Ch. 20.H.
15For a discussion, see Shell (1971) and Hellwig (2023).
16Although the total number of participants in this ex ante market system is countably

infinite, the definition and analysis of competitive equilibrium do not raise any technical
or conceptual problems. Because of the underlying overlapping-generations specification
of preferences, technologies and endowments, the number of participants interested in any
one contingent claim is finite, so the aggregate excess demand for that claim is well-defined
as a finite sum of excess demands of the interested participants.
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if the plans of people born in period t condition on the histories up to and
including t that determine their identities.17

Proposition 6.1 The autarky allocation is a competitive equilibrium allo-
cation in a complete system of contingent-claims markets ex ante in which
agents born in period t are distinguished by the histories (A1, ..., At) up to t
as well as their names. The equilibrium involves a sequence {qt(·)} of time-
and-history-contingent prices for the consumption that satisfies the equations

q1(A1) = 1 (6.1)

and, for any t > 1 and history (A1, ...At) up to t,

qt(A1, ..., At) = ψ(At) · qt−1(A1, ..., At−1). (6.2)

For the modified economy in which agents born in period t are distin-
guished by the histories (A1, ..., At) up to t as well as their names, the
concepts of interim Pareto effi cency and ex ante Pareto effi ciency coincide
because, in this economy, each agent naturally conditions on the history up
to and including the date of his or her birth. Proposition 3.1 thus becomes
a result about ex ante Pareto effi ciency. The comparison of

∑S
s=1 ψ(as) and

1
1+n , which is crucial for the distinction between the effi ciency and ineffi -
ciency pats of Proposition 3.1 can now be translated into a condition on the
equilibrium price system {qt(·)}.

Proposition 6.2 If
∑S
s=1 ψ(as) <

1
1+n , the value of aggregate consump-

tion at the equilibrium prices in Proposition 6.1 is finite, and the autarky
allocation is ex ante Pareto effi cient for an economy in which agents born
in period t are distinguished by the histories (A1, ..., At) up to t as well as
their names. If

∑S
s=1 ψ(as) >

1
1+n , the value of aggregate consumption at

the equilibrium prices in Proposition 6.1 is unbounded, and the autarky al-
location fails to be ex ante Pareto effi cient for an economy in which agents
born in period t are distinguished by the histories (A1, ..., At) up to t as well
as their names.

The standard proof of the First Welfare Theorem begins by observing
that, if an alternative allocation provides each participant with greater util-
ity than the competitive equilibrium allocation, then for each participant
17This procedure is the same as the procedure for constructing the agent normal form

of an extensive-form game, treating the same agent at two different information sets at
two different agents. See Selten (1975).
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the consumption plan under the new allocation must be unaffordable at
the equilibrium prices. Upon adding this inequality over all consumers, one
finds that the value at equilibrium prices of aggregate consumption under
the alternative allocation must exceed the value of aggregate consumption
under the competitive equilibrium allocation and therefore the value of the
aggregate available resources. This leads to the conclusion that the alter-
native allocation cannot be feasible: For at least one good, the alternative
allocation must stipulate consumption in excess of the resources available
for providing this good.

In the present model, with infinitely many agents and infinitely many
goods, one for each period and history up to that period, this argument goes
through if the value of aggregate consumption at the equilibrium prices in
Proposition 6.1 is finite, as it is if

∑S
s=1 ψ(as) <

1
1+n , and it breaks down

if this value is unbounded, as it is if
∑S
s=1 ψ(as) >

1
1+n . Proposition 6.2

thus links the classification of cases in Proposition 3.1 to the applicability or
breakdown of the standard proof of the First Welfare Theorem in a "large-
square" economy,which has an infinity of people as well as an infinity of
goods.

A Proofs

The first-order conditions in Lemma 2.1 as well as Lemma 2.2 and Proposi-
tion 2.3 follow by standard arguments, so their proofs are left to the reader.
Positivity of ca1 and c

a
2(A) for all A ∈ A follows from the first-order condi-

tions in Lemma 2.1 and the assumptions that u′(0) =∞, v′(0) =∞, ps > 0
for all s ∈ {1, ..., S} and that, for all s ∈ {1, ..., S}, there exists some i such
that f ′i(as, 0) > 0.

As for the proof of Proposition 3.1, the argument in the text shows that
the autarky allocation is interim Pareto-dominated if

∑S
s=1 ψ(as) >

1
1+n . It

remains to be proved that the autarky allocation is interim Pareto effi cient
if
∑S
s=1 ψ(as) <

1
1+n . I follow the same strategy as Abel et al. (1989). The

idea is to show that the equilibrium allocation maximizes the welfare of the
old generation in period 1 over the set of feasible allocations subject to the
constraint that no other generation be made worse off, using a Lagrangian
approach to deal with the constraints. The approach requires some care
in order to ensure that the duality conditions underlying the Lagrangian
approach are satisfied.18

18Abel et al. (1989) take it for granted that the Paretian maximization problem is
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If A = {a1, ..., aS} is the set of possible values of the productivity pa-
rameters in any one period, then At is the set of possible histories of the
productivity parameter up to t, i.e., the set of contingencies on which choices
at t may be conditioned. The space

E :=

∞⋃
t=1

[
{t} × At

]
, (A.1)

corresponds to the union of these sets of contingencies over all t. Notice that
E is a countable union of finite sets and is therefore a countable set.

An allocation is a mapping from E to R2+I+ that assigns to each date t
and each history (A1, ..., At) up to t a vector

(ct−12 (A1, ..., At), c
t
1(A1, ..., At), k

t
1(A1, ..., At), ..., k

t
I(A1, ..., At))

of actions in period t following the history (A1, ..., At), second-period con-
sumption of generation t− 1 and first-period consumption and investments
of generation t. An allocation is feasible if it satisfies the constraints

ct−12 (A1, ..., At) + (1 + n)

[
ct1(A1, ..., At) +

I∑
i=1

kti(A1, ..., At)

]

≤ (1 + n)E +
I∑
i=1

fi(At, k
t−1
i )), (A.2)

for all [t, (A1, ..., At)] ∈ E , where, for i = 1, ..., I, kt−1i = k0i for t = 1 and
kt−1i = kt−1i (A1, ..., At−1) for t > 1. An allocation is interim Pareto-preferred
to the autarky allocation if it satisfies the inequalities

v
(
c02(A1

)
) ≥ v

(
I∑
i=1

fi(A1, k
0
i )

)
(A.3)

for all A1 ∈ A and

u(ct1(A1, ..., At)) +

S∑
s=1

psv(ct2(A1, ..., At, as)) ≥ u(ca1) +

S∑
s=1

psv(ca2) (A.4)

equivalent to the Lagrangian maximization problem. Moreover, they do not verify that
the Lagrangian has a maximum, rather than a supremum. At the level of generality of their
formulation, which allows for technical regress and shrinkage of the economy, their result
is actually invalid. Chattopadhyay (2008) gives counterexamples, in which the Lagrangian
is unbounded and fails to have a maximum.
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for all [t, (A1, ..., At)] ∈ E with t > 1.
The proof strategy is to show that, for each A1 ∈ A, the autarky allo-

cation is a solution to the problem of maximizing v
(
c02(A1

)
) subject to the

feasibility constraints (A.2) and the Pareto constraints (A.4). For this pur-
pose, I consider introduce a suitably specified Lagrangian and show that, if∑S
s=1 ψ(as) <

1
1+n , the autarky allocation maximizes this Lagrangian and,

moreover, any solution to the problem of maximizing the Lagrangian is also
a solution to the Paretian problem of maximizing v

(
c02(A1

)
) subject to (A.2)

and (A.4).
To specify the Lagrange multipliers λt(A1, ..., At) for the feasibility con-

straints (A.2), I set

λ1(A1) = v′

(
I∑
i=1

fi(A1, k
0
i )

)
(A.5)

for t = 1 and A1 ∈ A and

λt(A1, ..., At) = (1 + n) · ψ(At) · λt−1(A1, ..., At−1) (A.6)

for t > 1 and (A1, ..., At) ∈ At. For the Pareto constraints, I specify Lagrange
multipliers µt(A1, ..., At) such that

µt(A1, ..., At) =
1 + n

u′(ca1)
· λt(A1, ..., At) (A.7)

for all [t, (A1, ..., At)] ∈ E .

Lemma A.1 If
∑S
s=1 ψ(as) <

1
1+n , the Lagrange multipliers λt(A1, ..., At),

µt(A1, ..., At), [t, (A1, ..., At)] ∈ E , define a pair λ∞, µ∞ of bounded additive
set functions on E.

Proof. Given the Lagrange multipliers λt(A1, ..., At), µt(A1, ..., At), the
formulae

λ∞({t} × {(A1, ..., At)}) := λt(A1, ..., At) (A.8)

and
µ∞({t} × {(A1, ..., At)}) := µt(A1, ..., At) (A.9)

define a pair of set functions on the singletons in E . One easily sees that
these set functions can be extended to additive measures λ∞, µ∞ on the
algebra of all finite subsets of E .
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I will show that these measures are uniformly bounded if
∑S
s=1 ψ(as) <

1
1+n . I begin with λ

∞ and note that, for any t > 1, one has

λ∞({t} × At−1) =
∑

(A1,...,At)∈At
λt(A1, ..., At)

=
∑

(A1,...,At)∈At
[(1 + n)t−1 · ψ(At) · ... · ψ(A2) · λ1(A1)]

= (1 + n)t−1 ·
∑
At∈A

ψ(At) · ... ·
∑
A2∈A

ψ(A2) ·
∑
A1∈A

λ1(A1)

=

[
(1 + n) ·

S∑
s=1

ψ(as)

]t−1
·
∑
A1∈A

λ1(A1).

If (1+n)·
∑S
s=1 ψ(As) < 1, (A.9) implies that the infinite series

∑∞
t=1 λ

∞({t}×
At) is well defined and satisfies

∞∑
t=1

λ∞({t} × At) =
1

1− (1 + n) ·
∑S
s=1 ψ(as)

·
∑
A1∈A

λ1(A1).

The additive measure λ∞ on the algebra of all finite subsets of E is therefore
σ-finite and has a unique extension λ∞ to the algebra of all subsets of the
countable set E .19 This yields

λ∞(E) =
1

1− (1 + n) ·
∑S
s=1 ψ(as)

· v′
(

I∑
i=1

fi(A1, k
0
i )

)

≤ 1

1− (1 + n) ·
∑S
s=1 ψ(as)

· v′
(

min
s′

I∑
i=1

fi(as′ , k
0
i )

)
.(A.10)

By the assumption that
∑I
i=1 fi(as, k

0
i ) > 0 for all s, (A.10) provides a finite

upper bound on λ∞(E).
The corresponding claim for µ∞ follows upon observing that, by con-

struction, µ∞(·) = 1
u′(ca1)

· λ∞(·).

Lemma A.2 If
∑S
s=1 ψ(as) <

1
1+n , then, for any A1 ∈ A, the autarky al-

location with c02(A1) =
∑I
i=1 fi(A1, k

0
i ) and, for t = 1, 2, ... and A1, ..., At+1,

ct1(A1, ..., At) = ca1,

ct2(A1, ..., At+1) = ca2(At+1),

19See Theorem A, p. 54, in Halmos (1950).
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and, for i = 1, ..., I,
kti(A1, ..., At) = kai .

maximizes the value of the Lagrangian

L({ct−12 (·), ct1(·), kt1(·), ..., ktI(·)}∞t=1|A1) = v
(
c02(A1

)
) (A.11)

+
∑

[t,(A1,...,At)]∈E
µt(A1, ..., At)

[
u(ct1(A1, ..., At)) +

S∑
s=1

psv(ct2(A1, ..., At, as))−W a

]

+
∑

[t,(A1,...,At)]∈E
λt(A1, ..., At)[(1 + n)E +

I∑
i=1

fi(At, k
t−1
i (A1, ..., At−1))]

−
∑

[t,(A1,...,At)]∈E
λt(A1, ..., At)

{
ct−12 (A1, ..., At) + (1 + n)

[
ct1(A1, ..., At) +

I∑
i=1

kti(A1, ..., At)

]}
,

over the set of bounded allocations, where

W a := u(ca1) +

S∑
s=1

psu(c̃a2(as)) (A.12)

is the expected utility obtained by a member of generation t > 0. The value

of the Lagrangian at the autarky allocation is v
(∑I

i=1 fi(A1, k
0
i )
)
.

Proof. By Theorem IV.8.16 in Dunford and Schwartz (1958), Lemma A.1
implies that the pair (λ∞, µ∞) of bounded additive set functions on the
algebra of all finite subsets of E defines a continuous linear functional on the
space [`∞(E)]2 of violations of the feasilibility and Pareto constraints (A.2)
and (A.4). At any bounded allocation therefore the value of the Lagrangian
(A.11) is well defined.

Because, by construction, the autarky allocation satisfies the constraints
(A.4) and (A.2) with equality, the value of the Lagrangian at the autarky

allocation is v
(∑I

i=1 fi(A1, k
0
i )
)
. By the concavity assumptions on utility
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and return functions, for any allocation, (A.11) yields

L({ct−12 (·), ct1(·), kt1(·), ..., ktI(·)}∞t=1|A1)− v
(

I∑
i=1

fi(A1, k
0
i )

)
(A.13)

≤
(
c02(A1)−

I∑
i=1

fi(A1, k
0
i )

)
· v′
(

I∑
i=1

fi(A1, k
0
i )

)
+

∑
[t,(A1,...,At)]∈E

µt(A1, ..., At) · u′(ca1) · [ct1(A1, ..., At)− ca1]

+
∑

[t,(A1,...,At)]∈E
µt(A1, ..., At) ·

S∑
s=1

psv
′(ca2(as))[c

t
2(A1, ..., At, as)− ca2(as)]

+λ1(A1) ·
((

I∑
i=1

fi(A1, k
0
i )− c02(A1)

)
− (1 + n)

(
(c11(A1)− ca1) +

I∑
i=1

(k1i (A1)− kai )

))

+
∑

[t,(A1,...,At)]∈E\{[1,A1]}
λt(A1, ..., At) ·

I∑
i=1

f ′i(At, k
a
i )[kt−1i (A1, ..., At−1)− kai ]

−
∑

[t,(A1,...,At)]∈E\{[1,A1]}
λt(A1, ..., At) · [ct−12 (A1, ..., At)− ca2(At)]

−
∑

[t,(A1,...,At)]∈E\{[1,A1]}
λt(A1, ..., At) · (1 + n) · [ct1(A1, ..., At)− ca1]

−
∑

[t,(A1,...,At)]∈E\{[1,A1]}
λt(A1, ..., At) · (1 + n) ·

I∑
i=1

[kti(A1, ..., At)− kai ].

I claim that the right-hand side of (A.13) is nonpositive. To prove this
claim, I first note that the difference (c02(A1) −

∑I
i=1 fi(A1, k

0
i )) enters the

right-hand side of (A.13) with a total weight v′
(∑I

i=1 fi(A1, k
0
i )
)
−λ1(A1).

By (A.5), this is equal to zero, so the terms involving this difference vanish.
The difference (ct1(A1, ..., At)− ca1) enters with a total weight

µt(A1, ..., At) · u′(ca1)− (1 + n) · λt(A1, ..., At).

By (A.7), this is also zero, so, for any t and any (A1, ..., At), the terms
involving the difference (ct1(A1, ..., At)−ca1) also vanish. The terms involving
the difference (ct2(A1,...,At, as)− ca2(as)) have the total weight

µt(A1, ..., At) · psv′(ca2(as))− λt+1(A1, ..., At, as).
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By (A.7), (A.6), and the definition of ψ(as), this is also zero, so these terms
also vanish. Finally, for any i, the difference (kti(A1, ..., At)− kai ) enters the
right-hand side of (A.13) with a total weight equal to∑

At+1∈A
λt+1(A1, ..., At+1) · f ′i(At+1, kai )− (1 + n) · λt(A1, ..., At).

By (A.6), this expression is equal to ∑
At+1∈A

ψ(At+1)f
′
i(At+1, k

a
i )− 1

 · (1 + n) · λt(A1, ..., At).

By the definition of ψ(At+1) and the first-order condition for kai ,

∑
At+1∈A

ψ(At+1)f
′
i(At+1, k

a
i ) =

S∑
s=1

psv
′(ca2(as))f

′
i(At+1, k

a
i )

u′(ca1)
≤ 1,

and the inequality is strict only if kai = 0. If kai > 0, it follows that the
weight with which the difference (kti(A1, ..., At) − kai ) enters the right-hand
side of (A.13) is equal to zero. If kai = 0, the difference (kti(A1, ..., At)− kai )
is nonnegative, and the contribution to the right-hand side of (A.13) of
the terms that involve this difference is nonpositive. The lemma follows
immediately.

Proposition A.3 If
∑S
s=1 ψ(as) <

1
1+n , then, for any A1 ∈ A, the autarky

allocation is a solution to the problem of maximizing v
(
c02(A1

)
) subject to

the feasibility constraints (A.2) and the Pareto constraints (A.4).

Proof. The proposition follows from Lemma A.2 above in combination with
Theorem 1, p. 220, in Luenberger (1969).

Proposition 3.1 follows immediately. Proposition 3.2 and Corollaries 3.3
and 3.5 follow by the arguments sketched in the text.

Proof of Remark 3.4. The first statement follows from the first-order
condition (2.5) in Lemma 2.1 and the observation, that for the critical s,
kai = 0 would imply ca2(s) = 0 and v′(ca2(s)) =∞.

To prove the second statement, suppose that limkj→∞ f
′
j(as, kj) = 0 for

all j 6= i and s and that kai = 0 even if E is large.
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I claim that, if E is very large, then, by the first-order condition (2.5), ca1
is very large and u′(ca1) is close to zero. Otherwise, u

′(ca1) would be bounded
away from zero and, by (2.5), for every j 6= i, there would exist s such that
v′(ca2(s))f

′
j(as, k

a
j ) is also bounded away from zero. For the specified s the,n

ca2(s) is bounded and so is kj . However, if k
a
i = 0 and ca1 as well as k

a
j , j 6= i,

are bounded, then, for large E, the constraint for generation t’s first-period
choices is not exhausted, contrary to the optimality of the autarky plan.

Given that u′(ca1) is close to zero if E is large, (2.5) implies that, for all j
and all s, v′(ca2(s))f

′
j(as, k

a
j ) is close to zero if E is large. Hence there exists

j such that kaj is large if E is large. For this j, the first-order conditions
(2.5) imply

S∑
s=1

psv
′(ca2(as))f

′
j(as, k

a
j ) ≥

S∑
s=1

psv
′(ca2(as))f̂

′
i(0),

hence
max
s
f ′j(as, k

a
j ) ≥ f̂ ′i(0).

Given the assumption that limkj→∞ f
′
j(as, kj) = 0 for all j 6= i and s, it fol-

lows that kaj is bounded even if E is large. The assumption limkj→∞ f
′
j(as, kj) =

0 for all j 6= i and s and that kai = 0 even if E is large has thus led to a
contradiction and must be false.

The proof of Proposition 4.1 follows step by step the same line of ar-
gument as the proof of Proposition 3.1. If one replaces the term (1 + n)
in conditions (A.2), (A.6), (A.7), and (A.11) by (1 + ν(At)), one finds that
Lemma A.2 remains valid without change. The conclusion of Proposition
A.3 then follows from the assumption that

∑S
s=1 ψ(as)(1 + ν(as)) < 1, with

a proof that is the same except for the replacement of
∑S
s=1 ψ(as)(1 +n) by∑S

s=1 ψ(as)(1 + ν(as)).
The proof of Proposition 5.1 follows from the argument sketched in the

text. Proposition 6.1 follows from Proposition 2.3.

Proof of Proposition 6.2. For a participant who is to be born in period t,
following the history A1, ...At, the value of the autarky consumption vector
(ca1, c

a
2(a1), ..., c

a
2(aS)) at the equilibrium prices in Proposition 6.1 is equal to

the value qt(A1, ..., AS) · (E + Πa), where

Πa =
S∑
s=1

I∑
i=1

ψ(as)fi(as, k
a
i )−

I∑
i=1

kai
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is the value of the maximum in (2.8), in Lemma 2.2. The aggregate of this
value over all participants who are to born in period t at all is equal to

(1 + n)t ·N0 ·
∑

(A1,...,AS)∈At
qt(A1, ..., AS) · (E + Πa).

By (6.2) and (6.1), this expression is equal to

(1 + n)N0 ·
[

(1 + n)
S∑
s=1

ψ(as)

]t−1
· (E + Πa).

By standard arguments, the infinite series that is obtained by adding over t

converges if (1+n)
S∑
s=1

ψ(as) < 1 and diverges if (1+n)
S∑
s=1

ψ(as) > 1. In the

case of convergence, ex ante Pareto effi ciency follows by the usual argument
for the First Welfare Theorem. In the case of divergence, the failure of ex
ante Pareto effi ciency follows by the argument used to prove Proposition
3.1.
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