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Abstract 

Simon’s (1955) famous paper was one of the first to cast doubt on the validity of rational choice 
theory; it has been supplemented by many more papers in the last three and a half decades. Nev-
ertheless, rational choice theory plays a crucial role in classical and neoclassical economic the-
ory, which presumes a completely rational agent. The central points characterizing such an agent 
are: (1) The agent uses all the information that is given to him. (2) The agent has clear prefer-
ences with respect to the results of different actions. (3) The agent has adequate competences to 
optimize his decisions. As an alternative to this conception, Simon (1955) himself suggests the 
concept of “bounded rationality”. In this context, Simon (1956) discusses a principle, which he 
names the “satisficing principle” (for explanations with respect to this notion cf. Gigerenzer & 
Todd 1999, p. 13). It assumes that, instead of searching for an optimal action, the search for an 
action terminates if an alternative has been found that satisfies a given “aspiration level”. It will 
be demonstrated that although the satisficing principle is nothing but a heuristic, there is a 
mathematical optimization at work when aspiration levels are used in this kind of problems. The 
question about the optimal aspiration level can be posed. Optimization within the framework of 
bounded rationality is possible. However, the way in which such an optimization can be 
achieved is very simple: Optimal thresholds in binary sequential decisions rest with the median.∇

                                      
∇  Helpful comments by Thomas Gaube, Hendrik Hakenes and Christoph Engel and the linguistic support by 

Darrell Arnold are gratefully acknowledged. 
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Rational Choice and Bounded Rationality 

Rational Choice theory, an integral tool of classical and neoclassical economics, assumes that 
humans make rational decisions in accordance with the principles of homo oeconomicus. In a set 
of different alternatives of actions A or a set of considered alternatives of actions Ă ⊆ A, a ra-
tional agent searches for the alternative, a ∈ A or a ∈ Ă respectively, yielding the best possible 
outcome.1 In Rubinstein’s attempt to “uncover some of the assumptions buried in” what he calls 
“the rational-man procedure” (Rubinstein 1988, p8f.), he mentions various characteristics of 
homo oeconomicus: He is completely informed about the problem he faces and has knowledge 
about the set of the possible states of affairs S and about the set of states of affairs Sa ⊆ S that 
could result from his actions. He has clear preferences. The preferences of the agent V(s) with 
respect to different concrete states of affairs s ∈ S are completely ordered. He has the ability to 
optimize. The agent must be able to choose the alternative that that ensures him the result he 
prefers most. This implies that his ability to calculate is unlimited, and he does not make mis-
takes. Finally he is indifferent to logically equivalent descriptions of alternatives and choice sets. 
These assumptions had largely already been discovered and clarified, at least in rough outlines, 
by Simon (1955) who characterizes economic man as follows: 

Traditional economic theory postulates an “economic man,” who, in the course of 
being “economic” is also rational. This man is assumed to have knowledge of the 
relevant aspects of his environment which, if not absolutely complete, is at least im-
pressively clear and voluminous. He is assumed to have a well-organized and stable 
system of preferences, and a skill in computation that enables him to calculate, for 
the alternative courses of action that are available to him, which of these will permit 
him to reach the highest attainable point on his preference scale.  
(Simon 1955, p. 99). 

He was one of the first to become suspicious of the usefulness of these assumption for the theo-
retical foundations of economics. In Rubin’s words: 

The refutation of the rational man paradigm by experimental data is not new. As 
early as 1955 Simon asserted “Recent developments in economics … have raised 
great doubts as to whether this schematized model of economic man provides a suit-
able foundation on which to erect a theory – whether it be a theory of how firms do 
behave or how they ‘should’ rationally behave.” Since then, a great deal of additional 
experimental evidence has been accumulated, mainly by psychologists.  
(Rubinstein, 1998, S. 16; citing Simon 1955, p. 99). 

Instead of bearing up the assumptions of rational choice, Herbert Simon (1955) introduced the 
satisficing-principle in order to accommodate constraints with regard to rational choice. The 
satisficing-principle is based on two essential ideas. The first idea is a radical simplification of 
the evaluation function V(s) with respect to the range of possible results. The only valid result of 
the evaluation function V(s)  are either the values 1, and -1 or the values 1, 0 and –1. In the first 
case, Simon interprets these values as satisfactory or unsatisfactory, in the latter case as a win, a 
draw or a loss, like in a chess game. As an example using the dichotomous evaluation function, 
                                      
1  The notation chosen here follows Simon 1955, which is different from Rubinstein (1998). This is why, in the 

following citations of Rubinstein, his formal explanations have been omitted. 

 2



Simon describes a situation where an individual wants to sell a house. In this example the role of 
aspiration levels within the satisficing principle as one conceptualization of bounded rationality 
is rather clear: 

As an example ... let S represent possible prices for a house an individual is selling. 
He may regard $15,000 as an “acceptable” price, anything over this amount as “satis-
factory”, anything less as “unsatisfactory.” In psychological theory we would fix the 
boundary at the “aspiration level”; in economic theory we would fix the boundary at 
the price which evokes indifference between selling and not selling (an opportunity 
cost concept).  
(Simon 1955, p. 104f.). 

Another feature of this example is also important, and Simon discusses it when he replies to 
some anticipated caveats. We are often in situations where decisions have to be made and we 
don’t have simultaneous access to the different alternatives at our disposal. Rather, we have 
sequential access to the different options. This feature will be decisive for the argument from 
probability theory which follows below. This argument, from Simon, demonstrates that the 
assumption of sequential decision situations is not artificial at all: 

The objection may be raised that, although $16,000 and $25,000 are both “very satis-
factory“ prices for the house, a rational individual would prefer to sell at the higher 
price, and hence, that the simple pay-off function is an inadequate representation of 
the choice situation. The objection may be answered in several different ways, each 
answer corresponding to a class of situations in which the simple function might be 
appropriate. 

First, the individual may not be confronted simultaneously with a number of buyers 
offering to purchase the house at different prices, but may receive a sequence of of-
fers, and may have to decide to accept or reject each one before he receives the next. 
(Or more generally, he may receive a sequence of pairs or triplets or n-tuples of of-
fers, and may have to decide whether to accept the highest of an n-tuple before the 
next n-tuple is received.) Then, if the elements S correspond to n-tuples of offers, 
V(s) would be 1 whenever the highest offer in the n-tuple exceed the “acceptance 
price” the seller had determined upon that time. We can then raise the further ques-
tion of what would be a rational process for determining the acceptance price.  
(Simon 1955, p.105). 

In the following, it will be demonstrated that although the satisficing principle is nothing but a 
heuristic, there is mathematical optimization at work when aspiration levels are used for these 
kind of problems. After the introduction of the principal argument – that there is a pertinent 
rationality in this kind of bounded rationality – we shall deal with the question whether and how 
an optimal aspiration level can be determined.2 In other words, in the following it will be shown 
that sequential decision-making using aspiration levels will always lead to advantages over mere 
guessing, even when no information about the underlying probability functions is available.  

                                      
2  The problem of rationally determining an adequate aspiration level (in Simons words an “acceptable pay-

off”) is also discussed in Simon’s (1955) appendix, but with the assumption that the probability distribution 
of offers is known. The argument that is presented in this paper will presume much weaker assumptions and 
offer interesting insights about the adequate use of aspiration levels. 
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The rationality of using aspiration levels 

Thomas Bruss (2000) presents a mathematical idea, beginning with an illustration in which an 
individual wants to sell a house. The example is similar to the example given in Simon (1955), 
and it, like Simon’s piece, is intended to refer to an abstract problem-structure that we encounter 
in everyday life. The problem structure underlying this class of problems can be grasped in an 
abstract game: 

We are often embarrassed to snap at the chance without knowing whether the things 
which follow are better. For the sake of clearness, let’s assume the scenario in an ab-
stract game. You ask your son and your daughter to pick a number (really any num-
ber you want, big or small, negative, with a decimal point, anything goes), each one 
in secrecy, to write it on a sheet of paper and to put it on the table covered. There is 
no consultation between your son and your daughter. You turn around the sheet of 
your son and have the choice to accept the number or to refuse it. If you refuse, you 
automatically get the number from your daughter. Afterwards both numbers have to 
be compared with each other. If you have chosen the bigger number you win, other-
wise you loose. The difference between the numbers is irrelevant, what counts is to 
win the game. If both numbers are equal, which is very unlikely, the game will be 
played once again. In order to exclude from consideration that you can infer the cho-
sen numbers due to the fact that you know your children, replace them in your 
thoughts by strangers. It could also be one person filling out to sheets.  
Now this really seems to be a game of pure chance, with a 50% probability of win-
ning. But now the surprise: Here is a strategy which may increase your probability to 
win. 
(translated from Bruss 2000, p. 106). 

In order to show how the probability to win can be increased, let us call the number which is 
drawn at first X and the second number Y. Z gives our aspiration level.3 Now the strategy works 
as follows: If the first number surpasses Z (that is X > Z), then choose X; otherwise choose Y. 
Thus three different possible events can be distinguished: 

– (A) Both X and Y are lower than or equal to Z, 
– (B) Z lies between X and Y (inclusive), 
– (C) Both X and Y are greater than Z. 

In Case (A) you choose Y; corresponding to that, in case (C) you choose X. In both 
cases your probability to win is 50%, because your decision results from a random 
choice. But in case (B) you win with certainty! You automatically choose the higher 
of the two numbers, independent of whether it is X or Y. Thus the total probability of 
winning is w=(a+c)/2+b, where a, b and c give the probabilities of the events (A), 
(B) and (C). Since one of these occurs with certainty it holds that 
w=(a+b+c)/2+b/2=1/2+b/24. Your probability of winning is augmented by b/2, com-
pared to a pure guess, and b is greater than zero. It is absolutely possible that your Z 
value lies between X and Y. (translated from Bruss 2000, p. 106). 

                                      
3  Please note that this aspiration level is similar to the one in Simon’s example about house-selling, where the 

success or failure of a decision is measured by the binary function V(s). You either win or loose with your 
decision. The selling-price itself is irrelevant. Arguments concerning why such a conceptualization makes 
sense can already be found in Simon’s (1955) paper itself. 

4  This is because w = (a+c)/2+b = a/2+c/2+b/2+b/2 = (a+b+c)/2+b/2 
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Thus it can be maintained that it is always advantageous to use aspiration levels in sequential 
decision situations, even if no further assumptions can be made with respect to the random proc-
ess which leads to the numbers X and Y. In the worst case we hold up the probability of a pure 
guess, but the use of aspiration levels can also increase the probability to win. This provides an 
essential argument for the use of aspiration levels in heuristics like Herbert Simon’s satisficing 
principle! 

Now Bruss pursues the issue as to how this strategy might be optimized. He asserts that the 
probability b of the event (B) should be preferably maximized. Therefore Z should be chosen 
such that 

the probability that Z lies between X and Y is maximized. But there is just no knowl-
edge about the values of these two numbers. Therefore generally no definite recom-
mendations can be given. But in concrete cases there are often good clues.  
(translated from Bruss 2000, p. 106). 

Is there an optimization within bounded rationality? About optimal 
aspiration levels in 2 choice-tasks 

Only partial consent can be given to Bruss’ argument. If, in contrast to Bruss, we don’t concep-
tualize X and Y as concrete values, but as two different realizations of one random variable be-
yond, some more considerations with respect to an optimal value of Z can be added. In the ex-
treme case, the probability distribution of the random variable may just consist in a distribution 
of the two numbers X and Y: but the probability distribution can also, for instance, be a normal 
distribution with a determined value of the mean and the variance. It is presumed that the real-
ized values of X and Y are independent from the succession. This assumption is plausible for 
both the example given by Bruss and the example given by Simon, although in the latter case, in 
the midterm run – when a sequence consists of more than two selling offers – people may make 
use of the price development information. In other words: In this case people may make use of 
what they have learned before they make their decision. 

Conceptualizing X and Y as two realizations of a random variable means that it is assumed that 
the values X and Y stem “from the same population” in the mathematical sense of the word. As a 
consequence of this conceptualization, it is possible to give a precise measure for Z, which opti-
mizes the probability of winning in the sequential decision task earlier presented. For the sake of 
clarification: it is merely necessary to assume that X and Y are realizations of the same random 
variable; no further assumptions are needed about the concrete definition of the underlying dis-
tributions such as Binomial distribution, normal distribution, or anything else.5 Furthermore, no 
information about the form of the distribution – such as skewness or variance – need be given. 

                                      
5  Again, this is in contrast to Herbert Simon’s (1955) reflections about optimal levels, which he offers in the 

appendix of his paper. There he makes parametric derivations. The conclusions given here are non-
parametric. 
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In this case, the median is the optimal value for Z needed in order to win the abstract game as 
often as possible. The median maximizes the probability of winning, because the probability that 
event (B) will occur (from the events (A), (B) and (C) given before) is maximized. Using the 
median as the aspiration level, there is a 50% chance that Z will lie between X and Y. This is 
because the probability p(X is below Z) is equal to the probability p(X is above Z), which is equal to 50% 
if the value of Z is the median. The same is true for Y with respect to p(Y is below Z) = p(Y is above Z) = 
½, because Y is a realization of the same random variable. The consequence of taking the me-
dian as a value for Z is that, in 25% of all cases, both X and Y are below the median. The prob-
ability of winning is ½ in this case (see above, case (A) in Bruss’ example). In 25% of all cases 
both X and Y are above the median; here the probability of winning is also ½ (case (C) in Bruss’ 
example). In 50% of the cases Z lies between X and Y; in this case you win with certainty (case 
(B) in Bruss’ example). The probability of winning results from the sum of the products, where 
the products are composed of the probability of the occurrence of a case, multiplied by the prob-
ability of winning in this case: 

pwin = (pcase A)(pwin in case A) + (pcase B)(pwin in case B) + (pcase C)(pwin in case C) = (¼)(½) + (½)(1)  
+ (¼)(½) = ¾. 

Any other value for Z would decrease the probability that Z will lie between X and Y, and there-
fore it would also decrease the probability of winning. Thus choosing the median as a value for 
Z, or, in other words, choosing an aspiration level which corresponds to the median, raises the 
probability of winning that is associated with a pure guess (p = ½) to a maximal possible win-
ning probability of p=¾.  

To summarize: The question about optimal aspiration levels can be answered. In case of a choice 
between two alternatives in sequence, it is the median, as long as the goal is to win the game and 
the extent or magnitude of the gain is ignored. This conclusion can be drawn without any de-
tailed knowledge of the probability distribution, which leads to the values X and Y. Compared to 
a pure guess, where no strategy is used, the probability of winning increases from ½ to ¾. How-
ever, does this knowledge have any practical use? In other words, if the intention is to use this 
knowledge in the sequential game presented before, there is no chance to make use of it as long 
as there is no estimation of the median available. The problem of estimating the median, or more 
generally, of estimating parameters of a population, is a typical statistical problems. 

This leads to an interesting question with respect to the learning mechanisms and the adaptations 
of heuristics in such choice tasks between two alternatives in sequence. When people have ex-
periences, in a statistical sense they take samples. Such samples can be used to make estimations. 
In the case of the satisficing principle and Simon’s example, learning the prices of former trans-
actions should lead to adaptations in aspiration levels. In cases where only two choices are given 
in a sequence, such learning mechanisms6 would be optimal with respect to the problem if the 
adaptation of the aspiration level were such that it corresponded to the median. It’s a moot ques-

                                      
6  Learning can take place by both our own experiences and by observing others’ decisions.  
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tion whether people do indeed adapt their choices in this task by using an estimation of the me-
dian. Some general doubts arise in light of the knowledge that people learn differently under 
implicit and explicit learning conditions (cf. Sedlmeier and Betsch 2002). Therefore, it is possi-
ble to maximize the occurrence of such adaptations of aspiration levels to the median only under 
one of the two conditions. 

This threshold is adequate and optimal when there is a sequential choice between two alterna-
tives and the “game” is only about winning or loosing, ignoring the absolute values. In the con-
text of ecological rationality, good arguments can be found that such games occur in the struggle 
to survive. Barrett and Fiddick (2000) argue that survival does not so much require that a certain 
expected value be kept as that a certain level, which guarantees survival with an utmost probabil-
ity, be sustained. For instance, organisms without the ability to build stocks have to choose be-
tween different foraging options in order to get enough energy to survive the next night. Falling 
below the energy level means complete loss or death  

However, not all problems have the underlying formal properties of the abstract game and Her-
bert Simon’s example. For instance, in some cases information on the probability distribution, 
which leads to the values of X and Y, is available, and the absolute value of gains or losses mat-
ters. In such cases the median is only optimal if the underlying distribution is symmetrical. How-
ever, if the absolute values don’t matter, the median is optimal even in asymmetric cases. This 
point is clear if we think about Bruss’ example. Let us, for instance, say that Y = -1. In this case 
it is irrelevant whether the value of X is 10 or 100. X is above Y in both cases; both 10 and 100 
win; and 100 does not represent a better result than 10. However, in the other cases it is neces-
sary to calculate the expectation (i.e. the expected value) of the distribution. Then it is necessary 
to calculate the sum of the probabilities (or densities) of each event multiplied by the respective 
values of the events. In this case, asymmetry leads to different optimal aspiration levels than the 
median: the mean becomes adequate in this case. 

This is also the result of Simon’s (1955) analysis in the appendix of his paper. The vital issue of 
the present paper is to show that aspiration levels generally imply strategic advantages in sequen-
tial decision situations under uncertainty, even in situations where uncertainty is very high or the 
available information is very low! It is also important to see that it is much easier to get good 
estimations about the location of the median than to arrive at good estimations or realistic as-
sumptions about the shape of the whole probability distribution underlying the uncertain situa-
tion. Employing the median makes it possible to easily adapt the aspiration levels to learning and 
experience.7  

                                      
7  But take care! This argument might be misunderstood if it is assumed that the median ought to be a better 

estimator of the central tendency of a distribution than the mean. Of course, this is not the case. It is well 
known in statistics that the variance of the sampling distribution of the mean is smaller than the respective 
variance of the median. Therefore, it makes sense to take the mean in cases or “games”, where such informa-
tion is available. 
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Generalization on decision-making in n choices-tasks 

So far we have discussed sequential decision-making with respect to two options. It now seems 
appropriate to ask about generalizations when more than two options are available. Such a prob-
lem can be grasped in the following way: 

Suppose a boy is to have a date with his choice of one of n unseen and unknown 
girls, and suppose he wishes to choose the prettiest. The girls are presented for him to 
see one at a time in a random order, and he must choose or reject a girl when she ap-
pears. Once he chooses, he sees the rest, and he is disappointed if his date is not the 
prettiest. How can he maximize his problem of choosing the prettiest in the lot.  
(Gilbert and Mosteller 1966, p. 35). 

In different articles this problem is presented as the “secretary problem”, the “dowry problem” or 
the “beauty contest”. The problem can be grasped more precisely in the following isomorphism: 

An urn contains n tags, identical except that each has a different number printed on 
it. The tags are to be successively drawn at random without replacement (the n! per-
mutations are equally likely). Knowing the number of tags n, the player may choose 
just one of the tags, his object being to chose the one with the largest number. The 
player’s behavior is restricted because after each tag is drawn he must either choose 
it, thus ending the game, or permanently reject it. The problem is to find the strategy 
that maximizes the probability of winning and to evaluate that probability. To em-
phasize that the player has no access to prior information, we could specify that the 
player is told after each tag is drawn only the rank of its numbers drawn so far. 
(Gilbert and Mosteller 1966, p. 38). 

The optimal strategy in this case consists in rejecting s tags and accepting the first tag after draw 
s where the rank of the number drawn so far is 1. The asymptotic (n → ∞) optimal solution gives 
s = n/e and p(win) = 1/e, where e = 2.718 (cf. Gilbert and Mosteller 1966, p. 36 or Bruss 2004). 

Our problem could also be generalized slightly differently, by assuming that people get the 
number printed on the tags instead of the present rank of their number they have drawn. In this 
case, learning about the underlying distribution of the numbers is possible. In the extreme case, 
the underlying distribution is already known exactly a priori. This case (besides many others) is 
also discussed in Gilbert and Mosteller (1966). 

One by one, a sample of n measurements is drawn from a population with continuous 
cumulative distribution F. The continuity assures that ties have probability zero. Af-
ter each draw, the player, who knows F and n, is informed of its value, whereupon he 
must decide whether or not to choose that draw. He is to maximize the probability of 
choosing the draw with the largest measurement in the sample.  
(Gilbert and Mosteller 1966, p. 51). 

In case of n=2, the analogy to the problem we discussed before is obvious: the optimal value for 
the selection is the value that separates the distribution in 0.50 and 0.50 (fifty-fifty split) and 
yields a probability to win of 0.75. In case of n = 3, Gilbert and Mosteller’s analysis yields the 
value that separates the distribution in 0.69 and 0.31 as the first threshold for the first draw; the 
second threshold is the same as before, yielding a probability to win of p = 0.68. The asymptotic 
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analysis with n → ∞  yields a probability to win of p = 0.58. (cf. tables 7 and 8 in Gilbert and 
Mosteller 1966). 

So what is new in the argument presented in the text at hand? It transcends the existing analyses 
on sequential decision-making, because the earlier analyses have not yet grasped the general 
advantage of thresholds. Gilbert and Mosteller separate their analyses into a non-parametric and 
a parametric part by assuming no knowledge of the underlying distribution at all or complete 
knowledge of the underlying distribution. In their non-parametric analysis, they have overlooked 
the fact that the probabilities calculated there are worst-case probabilities, resulting from making 
no use of thresholds at all in the secretary problem. This is why they find a probability of p = ½ 
for the secretary problem with n = 2. However, this problem is isomorphic to the Brussian prob-
lem presented above, where we could see that the use of a threshold may raise this probability, 
and the use of the median (in the ideal case) would lead to a probability to win of p = ¾ (this 
result corresponds to Gilbert’s and Mosteller’s analysis when there is complete information of 
the underlying distribution and n = 2; cf. table 8 there). Only if the threshold used is completely 
out of the range of the underlying distribution is the probability of a right guess p = ½. 

Generally, Gilbert’s and Mosteller’s analyses always deduce optimal thresholds by determining 
percentiles of the distribution that have to be surpassed in order for a choice to be accepted. 
Thus, determining thresholds is inherent to the task of calculating optimal choices, regardless of 
what the choice task looks like in detail. Depending on the details, different optimal thresholds 
can be calculated. 

This is exactly where critique about such optimal choices comes up. Peter Todd (1997) convinc-
ingly argues that different optimization standards may lead to very different results. Thus, for 
example, it makes a big difference whether the task is to find the best candidate in a series of n 
choices, or either the best or the second-best candidate. Even worse, Gilbert’s and Mosteller’s 
optimal solution would pick over 11% of choices of the lowest quartile of the underlying distri-
bution. This is unacceptable from the point of view of risk-averse standards. However, this ar-
gument does not concern the issue of this paper, because – in contrast to Gilbert’s and 
Mosteller’s analyses – this paper does not presume any methodological optimization standards. 
This paper rather shows that there is a general – you might even say a universal – advantage in 
the use of aspiration levels, even when there is no previous knowledge of the underlying distri-
bution, although the determination of optimal aspiration levels depends on the optimization 
standards. With the argument of the paper at hand, the question can be posed how organisms 
adapt their aspiration levels in dependence of learning processes. The knowledge of such adapta-
tions would make it possible to draw conclusions about the underlying optimization standards. 
By eliciting these standards, interesting conclusions about the tasks in our evolutionary past can 
be drawn; to do so, however, the assumption must be made plausible that these mechanisms have 
been developed in order to solve problems of evolutionary fitness. 
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Such arguments, for example, are made in the context of heuristics, when Gigerenzer et al. 
(1999) introduce the notion of evolutionary rationality, or in Cosmides and Tooby (2002), when 
they argue about the mechanisms of cheater detection. 

Following the argument of the text at hand, it seems that aspiration levels can be found, at least 
in heuristics that are useful for decision-making in sequential choice tasks. Gigerenzer’s heuris-
tics can be used in such tasks, as Peter Todd (2002) demonstrates in his analysis, where he makes 
use of a take The Next Best heuristic. This heuristic is a slight variation of the Take The Best 
heuristic, presented in Gigerenzer et al (1999). In the following it will be argued that indeed 
Gigerenzer’s heuristics make implicit use of aspiration levels. Thus, these heuristics can ensure 
an advantage greater than mere guesses, even in cases of sequential decision-making with com-
plete uncertainty. This advantage might also have been relevant in evolution. 

Some implications for the research on heuristics 

So far we have learned that – given an optimization standard – the use of aspiration levels may 
optimize choices in sequential decision tasks. This is true, although aspiration levels are used 
within approaches of bounded rationality! The bounded rationality approaches consist in simpli-
fying complex problems. However, the heuristics used with respect to such simplified problems 
may optimize towards this standard. And, in contrast to the original problem, optimizing be-
comes simple. 

In the following we consider an interesting, still unanswered question. In cognitive science, 
besides Simon’s satisficing principle, many different heuristics are in use. Despite the fact that 
researchers in cognitive science did not yet become aware of these mathematical insights, never-
theless there might be an implicit use of such advantages, e.g. by making use of thresholds that 
are implemented in the architecture of heuristics and by using adaptation mechanisms that come 
close to the mathematical insights. This question is interesting both for models already used, like 
the ACT-R cognitive architecture model (cf. Anderson 1993) and for empirical experiments 
about what and how subjects learn. In the latter case, evolution might have taken place such that 
human learning of thresholds takes place in a way that corresponds to the mathematical insights  

In the last section it will be shown that many well-known heuristics make implicit use of aspira-
tion levels. The question is: Besides Simon’s satisficing principle, which heuristics have  aspira-
tion levels or thresholds? 
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The Recognition Heuristic 

Gigerenzer & Todd (1999) take up Herbert Simon’s conception of a bounded rationality, con-
nected with methodological consequences, and his critique of perfect rationality. Like Simon, 
they presume some limitations in human information processing and the contextual influence of 
the environment. As they note: 

Simon’s vision of bounded rationality has two interlocking components: the limita-
tions of the human mind, and the structure of the environment in which the mind  
operates. 
(Gigerenzer & Todd 1999, p. 12). 

In connection with these arguments, they introduce the term “ecological rationality”, bringing to 
bear the particular role of the environment. 

We use the term “ecological rationality“ to bring environmental structure back into 
bounded rationality. A heuristic is ecologically rational to the degree that it is 
adapted to the structure of an environment… Thus, simple heuristics and environ-
mental structure can both work hand in hand to provide a realistic alternative to the 
ideal of optimization, whether unbounded or constrained.  
(Gigerenzer & Todd 1999, p. 13). 

In contrast to Herbert Simon, they also take decision situations into account in which different 
alternatives for action are simultaneously available. Their “fast frugal heuristics” may also be 
useful in these situations: 

Fast and frugal heuristics employ a minimum of time, knowledge, and computation 
to make adaptive choices in real environments. They can be used to solve problems 
of sequential search through objects or opinions, as in satisficing. They can also be 
used to make choices between simultaneously available objects, where the search of 
information (in the form of cues, features, consequences, etc.) about the possible op-
tions must be limited, rather than the search for the options themselves.  
(Gigerenzer & Todd 1999, p. 14). 

The recognition heuristic is the simplest heuristic presented by Goldstein & Gigerenzer (1999). 
This heuristic works by the simple principle: “If one of two objects is recognized and the other is 
not, then infer that the recognized object has a higher value.” (Goldstein und Gigerenzer 1999, 
p. 41). This heuristic uses a threshold8: 

                                      
8  In practice the thresholds in this heuristic may not be adaptable. Nevertheless, especially from an evolution-

ary point of view, it makes sense to ask where an optimal threshold should lie.  
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Figure 1: The Recognition Heuristic 
 

The recognition heuristic makes sense if the recognition of an object is correlated with the ade-
quacy of the chosen recognized object. Increasing this correlation increases the usefulness of this 
heuristic for questions like “Which U.S. city has more inhabitants: San Diego or San Antonio?” 
In one study, 100% of German students chose the correct answer, but only 62% of the students 
from the University of Chicago. On the other hand, in answering whether Dortmund or Munich 
has more inhabitants, Americans were much more apt than Germans to choose the right answer 
(cf. Goldstein und Gigerenzer 1999). This is because, with respect to German cities, Americans 
can use the recognition heuristic (taken for granted, they know of Munich but not of Dortmund); 
and vice versa, with respect to American cities. There Germans can use it (taken for granted they 
know San Diego but not San Antonio): 

Both studies illustrate the ecological rationality of the recognition heuristic. The rec-
ognition heuristic is ecologically rational in the sense that it exploits the structure of 
information in natural environments: Lack of recognition in these environments is 
systematic and not random. Ignorance is beneficial if it is correlated with what one 
wishes to infer. The heuristic is not a general purpose strategy because this correla-
tion holds in some situations, but not in all. 
(Goldstein und Gigerenzer 1999, p. 44). 

In the following we will see that the use of the recognition heuristic comprises an indirect choice 
of aspiration levels. This choice is indirect in the sense that the median is a value like the number 
of inhabitants, which separates the set of all cities in two subsets of equal size, one subset con-
taining all the cities below the median (that is, the small cities), and the other subset containing 
all the cities above it (that is, the big cities). However, the optimal aspiration level in the recogni-
tion heuristic is not determined by the median itself (that is, a size of a city), but rather by the 
optimal size of the recognized objects n. If recognition of a city correlates perfectly with the size 
of a city (in other words: if only the biggest cities are recognized), then the optimal value for the 
size of the set of recognized objects is n=N/2, which corresponds to the separation of a sample in 
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two sub-samples by the median split. In order to demonstrate this, we will go into some formal 
details of Goldstein and Gigerenzer’s analysis. 

In connection with their presentation of the recognition heuristic, the authors give a formula 
which calculates the proportion of correct answers when the recognition heuristic is applied in a 
two-alternative choice task. They presume a reference class consisting of N objects. A single test 
(question) consists of pairs of randomly chosen objects. There are three different ways the pairs 
of objects can be pieced together: both objects can be recognized; both objects can fail to be 
recognized; and only one of the two objects can be recognized. The N objects are compounded 
from n recognized objects and N-n unrecognized objects. In all the following different pairs of 
objects are possible: (N2-N)/2 = N(N-1)/2.9 From this total number, there are n(N-n) pairs with 
one recognized and one unrecognized object, n(n-1)/2 pairs where both objects are recognized, 
and (N-n)(N-n-1)/2 pairs where neither object is recognized. In calculating the proportion of 
possible pair matches in each of the three cases given above, the respective calculated number of 
possibilities has to be divided by the total number of pair matches. For instance, the proportion 
of matches with two recognized objects is n(n-1)/(N(N-1)) = (n/N)((n-1)/(N-1)). 

The correlation between the recognition of an object and the actual criterion is grasped by recog-
nition validity α and knowledge validity β. α provides the probability of getting a correct answer 
when one object is recognized and the other is not; β provides the probability of getting a correct 
answer when both objects are recognized. In those cases in which both objects are unknown, a 
guess must be made; and the probability of getting a correct answer is ½. Thus the proportion of 
correct inferences is (cf. Goldstein and Gigerenzer 1999, p. 44): 
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In the extreme example where all objects are unknown, this formula yields a 50% proportion of 
right answers, independent from α und β. Another question arises in extreme cases: namely, 
what is the ideal size of n for maximizing the proportion of right answers if the knowledge valid-
ity and the recognition validity are optimal – that is, if they have a value of 1? If the knowledge 
validity β = 1, then ideally all objects should be known with n = N. In this case the proportion of 
right answers f(n) is equal to 1. Now we can ask about the ideal size of n if the knowledge valid-
ity β = ½ and the recognition validity of α is optimal, that is α = 1. Please remember that the 
knowledge validity β is defined as the conditional probability of choosing the right object if both 
objects are known, for example, when the task is to choose whether Rome or Madrid has more 
inhabitants. Setting β = ½ implies a pure guess, with a probability of ½ of choosing the right 
answer if both cities in the example are known. Setting α = 1 means that the recognition heuris-

                                      

9  These are complete pair-by-pair comparisons. This is why this is equivalent to . 
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tic always yields the right answer if one object is known and the other object is unknown.10 With 
respect to our example, this means that all known cities are also the cities with more inhabitants 
than all unknown cities. That is, α = 1 means that if I compare an arbitrary known city with an 
arbitrary unknown city, the known city will always have more inhabitants than the unknown city. 
Now the question is: What is the optimal size of the known objects n, making it possible to 
maximize the proportion of right answers in this case? It can be calculated that the optimal size 
of n in this case corresponds to the reference value for the determination of the median11 with n 
= N/2, since the median gives the value of a variable that separates the sample into two equal 
parts with n1=n2= N/2 when all individuals are arranged in order. This provides an interesting 
link to the theoretical consideration discussed above about the theoretic derivations from Gold-
stein and Gigerenzer (1999). From our considerations, we can conclude that the condition for the 
recognition heuristics is ideal if the sample is divided up into two equal parts so that one part 
contains the low values of the sample, and the other part, the high values. If this ideal condition 
holds, the proportion of right answers reached by using the recognition heuristic raises from 50% 
(mere guessing) to nearly 75% if the pairs of cities that have to be compared with each other are 
randomly drawn. 

To sum up, it can be demonstrated that the use of the recognition heuristic comprises an indirect 
choice of aspiration levels. This choice is indirect in the sense that the median is a value like the 
number of inhabitants, which separates the set of all cities in two subsets of equal size, one sub-
set containing all the cities below the median (that is the small cities) and the other subset con-
taining all the cities above it (that is the big cities). However, the optimal aspiration level in the 
case of the recognition heuristic is not determined by the median itself (that is, a size of a city), 
but rather by the optimal size of the recognized objects n. But if α = 1, the optimal value for the 
size of the set of recognized objects is n=N/2, which corresponds to the separation of the sample 
in two sub-samples by the median split. This is why it makes sense to say that the use of the 
recognition heuristic, when assuming an optimal recognition validity (α = 1) and a nonexistent 
knowledge validity (β = ½), is optimal if and only if the aspiration level corresponds to the me-
dian. Because the result of the optimization is not the median itself, but the consequence of the 
application of the median in doing a median split of the total sample, the median as an optimal 
threshold has been determined “indirectly”. 

Let us now consider the heuristic Take The Best, which is also presented in Gigerenzer, Todd & 
ABC-Group (1999), and where the use of aspiration levels is also an essential functional feature. 

                                      
10  Therefore, it makes sense to assume that β ∈ [1/2, 1] and a ∈ [0, 1]. If a < ½, then recognizing an object 

should lead to a decision against that object, whereas in the case of a > ½, recognizing one should lead to a 
decision in favor of it. 

11  The reason for a marginal deviation from N//2 is that in total pair matching, the matches between an object 
with itself fall out so that, given N objects, instead of N2, only N*(N-1) pair-matches take place. 
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Take the Best 

Let us assume that we know absolutely nothing about the cities, but recognize all of them. In this 
case, recognition is worthless and the knowledge validity about the size of the cities  is ½. Nev-
ertheless, a somehow more complicated heuristics may be useful. Such a heuristic is Take The 
Best. What we will see in the following is that, in this heuristic, aspiration levels play an essen-
tial functional role as well.  

In principle, this heuristic is based on the recognition heuristic, and like the recognition heuristic 
it can be used to make a choice between two objects. Making the assumption given before, i.e. 
that both objects are recognized, the Take The Best heuristic can be seen as a refinement of the 
recognition heuristic. This is especially valuable if the knowledge validity β is near ½, which 
means that we have no knowledge about the size of the recognized cities. In this case, the ques-
tion “Which of these cities has more inhabitants: Rome or Madrid?” can not be answered by 
using the recognition heuristic.  

However, if we have some knowledge about the cities besides their size, and if some of this 
knowledge is correlated with the size of the cities, the Take The Best heuristic can be applied. 
Take The Best gives a fixed sequence of cues to be checked. These cues are correlated with the 
size of the cities. In Take The Best, the sequence of cues is ordered with respect to their validity, 
so that the cue with the highest correlation to city size is checked first; the cue with the second-
highest correlation is checked next and so on. In contrast to this optimal check-order, the mini-
malist heuristic checks that the cues are in a random sequence. The principal method behind all 
these heuristics consists in checking all these cues until one is found that is known for both cities 
and that is only fulfilled in one of the two objects or that has a higher cue value in one of the two 
cities: 

For instance, one of the heuristics that we propose, called Take The Best, decides be-
tween two available options by searching through cues in order of their validity, 
stopping when the first cue is found that distinguishes the options, and selecting the 
option indicated by the higher cue value. (Todd, Fiddick und Krauss 2000, p. 375).  

Thereby two significant properties tag each cue: its ecological validity and its discrimination 
rate. 

The ecological validity of a cue is the relative frequency with which the cue correctly 
predicts the criterion, defined with respect to the reference class... The discrimination 
rate of a cue is the relative frequency with which a cue discriminates between pairs 
of objects from the reference class. (Gigerenzer and Goldstein 1999, p. 84f.). 

The ecological validity can be calculated by the following formula: 

vi = (number of correct predictions)/(number of predictions, where the cue is used) (cf. Gigeren-
zer & Goldstein 1999, p. 80). The authors don’t compare the applications of the recognition 
heuristic and the Take The Best heuristic from a formal point of view. Nevertheless, the latter is 
an alternative to the former when both objects are recognized. If the recognition heuristic is 
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applied in this case and the choice of an object is based on the knowledge about the objects, the 
parameter β gives the probability of right decisions or hits. It is clear that Take The Best outper-
forms the recognition heuristic if a cue can be found which has a higher ecological validity vi 
than the knowledge validity β of the recognition heuristic.12

In our discussion it is important to keep in mind that Take The Best can be grasped as a generali-
zation of the recognition heuristic. To recognize an object in the sense of the recognition heuris-
tic can be understood as a cue (“recognized”, “unrecognized”) in the sense of the Take The Best 
heuristic. In those cases in which both objects are recognized, the recognition cue can be sup-
plemented by further cues. Thus the formal treatment of each cue in the Take The Best heuristic 
is an analogue to the formal treatment of the recognition heuristic. Therefore in the case of the 
Take The Best heuristic we can also speak of an indirect use of aspiration levels: their utility is 
crucially dependent on the correlation between the cues and the criterion. 

Summary 

There is a strategic advantage in the use of aspiration levels for many heuristics and even cogni-
tive models that have been developed in the context of research on bounded rationality. Thus far,  
this strategic advantage in sequential decisions under uncertainty has been ignored. Integrating 
theses theoretic considerations could help to refine the corresponding adaptation mechanisms. 
For instance, an aspiration level could be arbitrarily set at the beginning and then, with new 
information, be modified towards the estimated median. Given the additional information, deci-
sion-making under uncertainty could be enriched by a complete expectation calculus, which is 
only necessary if the underlying probability distribution is skewed. Consequently, the considera-
tions offered here open up new approaches for dealing with decisions under uncertainty on the 
basis of previous experiences. 

Besides being of use for the models in the context of bounded rationality, these considerations of 
the advantages of aspiration levels may also be productive in other domains where aspiration 
levels are used, for example, in the context of models on attitudes. A concrete example is the 
Heuristic Systematic Model (HSM) of persuasion (cf. Bohner 2001). In accord with this model it 
is postulated that people strive for sufficient consistency in their attitudes. Thereby “sufficient” is 
operationalized by two constructs: the sufficiency threshold (ST), which gives the desired consis-
tency, and the actual confidence (AC). As long as the AC value lies below the ST value, the 
respective person is motivated to look for more information. This model of attitudes has a clear 
link to Simon’s (1955) satisficing principle. It goes beyond Simon (1955) in maintaining that the 
sufficiency threshold depends on situational realities (for instance, whether the situation is im-

                                      
12  Besides the ecological validity, the value of cues depends on their discrimination rate. That is the proportion 

of pair-matching between the objects where the cue is applicable to the total number of possible pair matches 
between two objects from the reference class. Because this consideration has no relevance for the introduc-
tion of the argument presented here, a formal presentation of the discrimination rate has been omitted. Such a 
formal presentation can be found in (Gigerenzer und Goldstein 1999, p. 85). 
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portant or not) as well as on variables of the individuals involved (like the subjective responsibil-
ity felt by the person – cf. Bohner 2001, p. 261). Nevertheless, it uses aspiration levels, which 
can be modified in reference to external and internal changes. The considerations here show how 
the modifications of sufficiency thresholds could be optimized with reference to external 
changes. 

To summarize the paper: Even within the framework of models of bounded rationality, the ques-
tion of optimal adaptation makes sense. However, it does so only if it is simple to perform. Oth-
erwise, it is inefficient to give up the assumptions of rational. The use of aspiration levels in 
sequential decisions under uncertainty seems to allow such simple optimization procedures by 
just trying to take the median as the aspiration level. This simple rule leads to (strategic)13 advan-
tages in decision-making processes. 

                                      
13  Strategic advantages come into play from an evolutionary point of view. 
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