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Abstract

We present the results of an experiment on learning with min-
imal information. Particularly, subjects are only provided with
feedback about their own payoff from the last period of the game
being played, but not with information about the structure of
the game. We compare the empirical structure of the decision
algorithm for this setting with the empirical structure of algo-
rithms for subjects who receive sufficient information to learn the
game. The laboratory data show that, depending on the informa-
tion setting, players adjust their strategy choice differently. The
structure of the decision algorithm for subjects operating with
minimal information indicates myopic responses to success, while
the structure for sufficiently informed players is more complex.
As a consequence, sufficiently informed players outperform play-
ers who have minimal information in a simple coordination game.
Yet, if the structure of the game changes, readjustment is more
successful for the players operating with minimal information.
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1 Introduction

During the last decade, there has been an increasing economic litera-
ture on individual learning theories (e.g., Crawford, 1995, Mookherjee
& Sopher, 1997, Fudenberg & Levine, 1998, Huck et al., 1999). Those
theories apply algorithms to predict individual adaptation processes. Ex-
perimental data show that algorithms that base decisions on a rich set
of information, for instance fictitious play, poorly describe human be-
havior.1 Rather, algorithms of limited cognitive sophistication are more
useful descriptions of real decision making (e.g., Roth & Erev, 1995, Erev
& Roth, 1998, Camerer & Ho, 1999). Among all pieces of information,
one’s own payoffs appear to be the most relevant.2 Even for fairly com-
plex environments, Nagel & Vriend (1999) show that subjects’ behavior
can best be described by the simple rule of directional learning relating
individual actions and individual payoffs. The experimental evidence
suggests that subjects use the provided information quite selectively;
unnecessary information is neglected.

We want to pursue the issue in the opposite direction. By and large,
the literature on individual learning is concerned with which information
is important for the decision algorithm. The objective of our paper is to
investigate how the structure of a particular decision algorithm responds
to the information received about the environment. Especially, we are
interested in exploring how subjects behave under conditions of minimal
information, that is, if they do not know the payoff matrix of the game,
and if their own payoffs are the only feedback players receive, and how
the structure changes if information is enriched. For this purpose, the
structure of the decision algorithm both for players with minimal in-
formation and for players with additional information is estimated and
compared. There are only a few studies dealing with learning under
conditions of minimal information (e.g., Arickx & van Avermaet, 1981,
Mitropoulos, 2001). The general results suggest that the restricted feed-
back leads to more inertia in players’ actions than they exhibit in settings
with a richer feedback (Mookherjee & Sopher, 1994, van Huyck et al.,
2005). In oligopoly experiments, inertia of less informed players leads to
less competitive prices/quantities (Huck et al., 1999); later studies, how-
ever, cannot confirm this result for actions in continuous time (Friedman
et al., 2004).

For the estimation, we use the experience-weighted attraction learn-
ing model (hereafter EWA) by Camerer & Ho (1999). The EWA model

1Fudenberg & Levine (1998) extensively discuss fictitious play.
2Strategy choice obeys the “law of effect” (e.g., Herrnstein, 1970) as strategies

which have been successful are played more frequently than those which have been
less successful.
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provides us with a framework assessing the explanatory power of simple
decision algorithms, like reinforcement learning, and directional learn-
ing. Prior to playing, subjects are not informed about the structure of
the game. However, some players receive sufficient information in order
to learn the structure of the game, while other do not. We focus in our
experiment on two simple 2x2 games, the mutual fate game (hereafter
MFC) and the fate control/behavior control game (hereafter FCBC). We
will introduce the two games in Section 2. We chose these two games
since successful coordination in the games requires that the decision al-
gorithm has a specific structure. In Section 3, we discuss the EWA
model, along with the structure it needs for the MFC and the FCBC.
Section 4 reports the experimental data. Section 5 discusses the results
of our experiment.

2 The games and the experimental design

In the experiment, all subjects are informed that they will be playing
a simple 2x2 game, that is, two players, two alternative actions, that
involve only two possible payoff levels, either 0 or 1. Consequently, in
principle, players face 28 possible games.3 Eliminating all the trivial
games4 and all games with a weakly dominated action, four different
types of games remain: the matching pennies games (where one player
wins one point when he chooses the same action as the opponent, while
the other wins when he chooses the opposite action of the other), a
simple coordination game (where both players win a point when they
both choose the same action), MFC, and FCBC (Mitropoulos, 2001).
Psychologists are more familiar with MFC since it characterizes what
psychologists define as a minimal social situation (Sidowski et al., 1956,
Kelley et al., 1962). Here, one of at least two persons affects the payoff of
at least one other player by choosing an action – possibly even without
knowing of this effect. Crucially for MFC, the individual payoff of one
player depends exclusively on the actions by the other player, but is not
influenced by the action that one choices. The resulting bimatrix of the
game is shown in Table 1.

Of course, any mixed strategy vector is a weakly dominated Nash
equilibrium. One can think of the following illustrative example. Con-
sider two train compartments, denoted as left and right. Both compart-

3This setting is different from that in experimental detecting games, which test
the ability of subjects to investigate the type of counterpart they have, while knowing
what type they themselves are (e.g., Cox, Shachat & Walker, 2001 and Oechssler &
Schipper, 2003). We do not have any prior information about any type of player.

4Games where both players receive the payoff / do not receive any payoff, irre-
spective of the action chosen.
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player 2 a b
player 1

1 1
a 1 0

0 0
b 1 0

Table 1: The payoff matrix for the mutual fate control game

ments are equipped with a two-scaled air-conditioning system. However,
the system control in the right compartment controls the system in the
left compartment, and vise versa. Let us assume that travelers are not
allowed to leave their compartments. The interesting question now refers
to how travelers in the left compartment signal the travelers in the right
compartment their desire for low/high temperatures by use of the sys-
tem control in their compartment. Simultaneously, travelers in the right
compartment try to signal their needs using their system control.

The second game we use for our laboratory experiment differs only
slightly from the MFC. The fate control/behavior control game was first
introduced by Thibaut & Kelley (1959) and Rabinowitz et al. (1966).
Whereas in the MFC, any mixed strategy vector is a weak Nash equi-
librium for both players, in the FCBC, for one player there is a best
response to the action of the other player. The relationship among the
players can be characterized as follows: player 1’s action determines the
payoff of player 2, regardless the action chosen by player 2. Therefore,
any mixed strategy vector is a best response by player 2. However, player
1 has a distinct best answer to the action chosen by his/her counterpart,
that is, player 1’s payoff depends on player 1’s and player 2’s action.
The resulting bimatrix for the payoffs of the FCBC is shown in Table 2.

For p, indicating the probability of player 1 choosing a, and q, the
probability of player 2 choosing a, any q for 0 ≤ q ≤ 1 belongs to an
equilibrium vector (p, q). However, for player 1 it is possible to specify
three optimal responses; thus, we have the three types of equilibrium
vectors (p, q) in the FCBC: (1

2
, 1

2
), (0, q′), and (1, q′′) for all q′ and q′′,

respectively, such that 0 ≤ q′ < 1
2

< q′′ ≤ 1.
The experiment consists of 4 phases. Pairs of players remain in the

same group throughout the entire experiment. Participants first face two
phases of 30 periods each of the MFC. Within each phase, the structure
of the payoff matrix does not change. Between phases, we permutate
the payoff matrix of the MFC and inform players that the structure
of the game has changed. After two phases of the MFC, we permu-
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player 2 a b
player 1

1 1
a 1 0

0 0
b 0 1

Table 2: The payoff matrix for the fate control/behavior control game

tate the structure of the payoff matrix such that subjects face a FCBC.
Again, the structural change is announced, and subjects play 30 periods.
Thereafter, we permutate the payoff structure such that players face an-
other FCBC. After announcing the structural change, subjects play for
another 30 periods.

The complexity differs substantially if the games are played under
the minimal information setting or with sufficient information, allowing
players to understand the structure of the game. In particular, we will
observe decisions of players with the following degrees of information
about the games:

• (The minimal information setting) Both players are informed that
they will be playing a symmetric two-person game5 with two choices
and a payoff of either 0 or 1. As feedback, they receive only their
own payoff. We refer to these subjects as the low informed players
(hereafter LI players).

• (The rich information setting) In addition to the information avail-
able in the LI condition, both players observe the choice of their
counterparts in the same period. We refer to these subjects as the
rich informed players (hereafter RI players).

Note that LI players cannot understand the structure of the game. They
may observe that there is little relation between their own action and
their own payoffs, but they cannot learn that the action of the counter-
part exclusively determines their own payoffs. In contrast, RI players
can learn the structure of the games by disentangling the payoffs for all
four cells of the games. In addition to these two treatment conditions,
one may argue that additional incentives facilitate the understanding of
the game’s structure. Subjects may search more systematically if finan-

5Of course, we informed players that symmetry is not retained in phases two,
three and four.
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cial incentives vary across the experiment. Therefore, we introduce the
following treatment condition:

• (The rich information plus setting) Both players receive the same
information as RI players. However, their payoff is either 0 or 1 in
the first phase of the experiment, 0 or 2 in the second phase, 0 or
3 in the third phase, and 0 or 4 in the fourth phase. We refer to
these subjects as the rich informed “plus” players (hereafter RI+
players).

Finally, we want to disentangle the behavior of players who received
minimal information and the influence due to having previously played
the MFC. For this purpose, we consider minimally informed players who
only participated in the FCBC.

• (The control setting) Both players receive the same information as
LI players, but play only two phases of the FCBC. We refer to
these subjects as the control players (hereafter CO players).

In the experiment, both subjects in each group are either LI players,
RI players, RI+ players, or CO players. At the end of each phase, partic-
ipants are asked to describe the payoff mechanism in an open question.
Furthermore, in order to estimate subjects’ short-term memory capac-
ity after the experiment, subjects are asked to participate in a Wechsler
digit span test (Wechsler, 1945). For one second we present random
numbers with increasing digits, which have to be repeated by subjects
after the number disappeared. We use the number of the last digits cor-
rectly reported as an approximation of the short-term memory capacity
of the subjects. We introduce both the open question and the memory
test to get more insights about the relation between memory capacity,
information levels, and the correct understanding of the games’ struc-
ture. Yet, we have to mention that no monetary incentives are provided
for either task.

3 Learning and the minimal information setting

It seems that the MFC and the FCBC are rather simple. However, if
played under the minimal information setting, the situation changes dra-
matically. We argue that the MFC and the FCBC are complex games,
since, referring to measurements of the cognitive complexity of games,
the fact that the players’ own payoffs depend exclusively on the action
the counterpart’s choice is puzzling. Schelling (1960) provides the basic
distinction between pure-motive and mixed-motive games. Pure-motive
games are easy to grasp since they are characterized by a clear-cut cor-
relation between the two players’ preferences for their actions; yet, the
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non-correlated structure of preferences of mixed-motive games is inher-
ently difficult to understand. More formalized, Devetag and Warlien
(2005) develop a classification of relational complexity of two-person nor-
mal form games that is based on the players’ preferences for the order of
payoff cells. They show, in an experiment where subjects first have to
develop a representation of games of different complexity, that the eas-
ier subjects can derive the preferable order of cells by their counterpart
from their own order of cells, the better they understand the structure
of the game. The better subjects understand the structure, the better
they perform while playing the game. In accordance with earlier studies
(Nyarko & Schotter, 2000), Devetag and Warlien find that subjects who
misrepresent the games behave in a way that is consistent with these
representations.

Certainly, the MFC and the FCBC are neither pure-motive games
nor games of low relational complexity. The important difficulty arises
from the fact that, for both players in the MFC and for one player in the
FCBC, any (mixed) action choice is an element of a Nash equilibrium.
Previous theoretical studies by Jordan (1991, 1995) demonstrated that,
given learning processes, in finite-player, finite-action games played un-
der minimal information setting, behavior converges to Nash equilibria.
The interesting – but more demanding – question is whether subjects
can coordinate, after repeating the game, on the particular equilibrium
that yields the Pareto efficient outcome, that is, action “a” for the bima-
trices in Figure 1 and Figure 2. Hereafter, we denote this coordination as
Pareto efficient coordination, PEC. In previous experiments for the MFC
(Mitropoulos, 2001), 54% of subjects choose the PEC after 10 periods
of play. However, the frequency remains far below the rate that one ex-
pects for a convergence towards the PEC. After 100 periods, Mitropoulos
finds only 66% of subjects choosing the PEC. This result confirms ear-
lier experiments reported by psychologists (e.g., Rabinowitz et al., 1966,
Arickx & van Avermaet, 1981). However, in those experiments, subjects
typically did not know whether they were playing a two-person game,
and incentives were non-monetary.

Apparently, the difficulty of successfully coordinating varies in ac-
cordance with the degree of information about the game. Moreover,
it seems plausible to assume that the degree of information crucially
changes the way players make their decisions. Hence, we should see dif-
ferences for the estimated decision algorithms depending on the degree of
information. For all estimations, we use a simplified version of the EWA
learning model proposed by Camerer and Ho (1999), since this model is
a very general representation of several learning rules. The EWA model
refers to the attractiveness of actions which are updated based on pay-
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off experience. Unlike the standard reinforcement learning (e.g., Roth
& Erev, 1995), EWA also considers the hypothetical reinforcement of
actions that were not chosen (according to the payoff they would have
yielded). In particular, we define, for player i, the attraction of a certain
action aj

i to be chosen in period t + 1, Aj
i (t + 1) as

Aj
i (t + 1) = ρ1A

j
i (t) + ρ2πi(a

j
i , a−i(t)) + ρ3I(aj

i )πi(a
j
i , a−i(t)), (1)

where πi(a
j
i , a−i(t)) denotes player i’s payoff, yielded by i’s choice of

action aj
i , given the choice a−i(t) by all players other than i in period

t. Furthermore I(aj
i ) equals 1 if player i actually chose aj

i in period t;
it is otherwise 0.6 Thus, the coefficient ρ3 reflects the difference in the
influence between a payoff yielded and a payoff that would have been
yielded. On the other hand, the coefficient ρ1 indicates the autoregressive
influence of earlier experience on the current attractiveness of a certain
action, that is, the non-myopical influence for the decisions.

Depending on the parametrization of Aj
i (t + 1), the EWA allows us

to characterize different learning rules. A very common type of simple
learning is reinforcement learning. For reinforcement learning, only ac-
tually yielded payoffs influence attractiveness, so that we expect ρ1 6= 0,
ρ3 > 0, but ρ2 = 0. However, Mitropoulos (2001) shows for the MFC
that reinforcement learning fails to provide PEC, and it describes the
behavior of LI players rather poorly. Therefore, we need a different ap-
proach to describe the behavior of players who reach PEC. This approach
is rather simple and follows the basic structure of learning direction the-
ory (Selten & Stöcker, 1986). The theory posits that players change their
choices in accordance with a qualitative picture of the world. Whenever
they get a negative feedback (no payoff per period), they change the di-
rection of their action. Specifically for the MFC, Mitropoulos (2001) of-
fers the win-stay/lose-change adaptation scheme (hereafter ws/lc), which
leads, for the MFC, to coordination on the PEC.7 Note that the ws/lc
decision rule leads to the restriction of ρ2 > 0, while ρ1 = ρ3 = 0. Thus,
players learn to act myopically. Figure 1 shows the evolution of action
if both players follow ws/lc. Let us assume that players find themselves

6The original EWA model provides a richer set of parameters, a depreciation
rate σ1 that measures the fractional impact of previous experience, and a discount
factor σ2 that depreciates previous attraction. The factors depend on the amount of
previous experience in order to capture the “power-law of practice”, i.e., the influence
of new experience decreases with experience. We will not focus on these parameters,
as they are not essential for our further argumentation. Nonetheless, they can be
reproduced from our set of parameters by σ1(t) = 1−ρ2−ρ3

(ρ2+ρ3)t
and σ2(t) = ρ1

(ρ2+ρ3)t
, with

t denoting the amount of previous experience.
7This rule shows some similarities to the class of search-and-select adaptation

rules proposed by Conlisk (1993).
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period t t + 1 t + 2 t + 3
player 1 b (1) b (0) a (1) a (1) . . .
player 2 a (0) b (0) a (1) a (1) . . .

Figure 1: The ws/lc adaptation for the MFC (payoffs in parenthesis)

in the constellation of period t. Then, ws/lc leads to PEC within the
next two periods. If, however, players find themselves in the constella-
tion of period t + 1, PEC is reached in the next period. Finally, if both
players follow ws/lc, their actions do not change thereafter, that is, in
period t + 2 and later periods. It is important to stress that all players,
LI, RI, RI+, and CO players, receive such a degree of information that
they can develop a reinforcement learning algorithm. However, ws/lc
requires an understanding of the basic structure of the MFC; otherwise
the prediction of ρ2 > 0 seems counterintuitive. Thus, we test the data
of RI and RI+ players for the ws/lc. For reasons of completeness, we
also retain ρ2 in the estimation for LI players, but do not assume ρ2 > 0
here. Previous experimental evidence by Mitropoulos (2001) suggests
that subjects acquire a representation of the game that is much more
complex. Particularly, he reports frequent individual patterns such as
an alternation in their choices of actions or in the sequences of certain
changes in actions. Empirical behavior must therefore be modelled such
that ρ2 > 0, ρ3 > 0, and, especially, ρ1 6= 0, for example, that alternating
changes of actions would result in ρ1 < 0.

More abstractly, ws/lc learning refers to the most simple algorithm
with the least number of significant coefficients of the EWA model. One
can argue that the rich information setting – and even more, the rich
information plus setting – facilitates sufficient information about MFC,
and, therefore, promotes decisions to follow the simple ws/lc rule. Con-
sequently, one expects that players in the minimal information setting
will be free to interpret the MFC in various ways since they cannot un-
derstand the game. Thus, we can assume that the estimated structure
of LI players’ decision algorithms will be more complex than those of RI
and RI+ players, since LI players have no chance to detect the structure
of the game.

On the other hand, one can claim that more information facilitates
decision algorithms with more complex structures. This argument rests
on the idea that the less players know about the game, the less can they
(mis)interpret its structure. Thus, we have to test whether the structure
of LI players’ decision algorithm is less complex than those of RI and
RI+ players.
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period t t + 1 t + 2 t + 3
player 1 b (0) a (0) b (1) b (0) . . .
player 2 a (0) b (1) b (0) a (0) . . .

Figure 2: The ws/lc cycle moves in the FCBC (payoffs in parenthesis)

A major difficulty arises for subjects who apply the successfully
learned ws/lc strategy for the PEC in the FCBC. Unless they start
with PEC by pure chance, ws/lc creates cycle moves (see Rabinowitz et
al., 1966). Figure 2 schematically shows the cycle moves for the FCBC
according to ws/lc. Suppose players find themselves in the constellation
of period t. Then ws/lc leads to a change in action for both players so
that they end up in the constellation of period t + 1. Departing from
period t + 1, player 1 changes his action, while player 2 does not; this
leads to the constellation of period t + 2. Therefore, player 1 retains in
the same course of action, whereas player 2 changes his course of action
in t+3. As a result, the evolution of action ends again in a constellation
equivalent to t, and the PEC is not reached on this cycle.

Thus, experienced players, that is, subjects who learned to adapt
their actions according to ws/lc, have to unlearn myopia if they are to
be successful in the subsequent FCBC game. Note that no unlearning
is required if players, under the minimal information setting, acquired a
more complex, suboptimal decision algorithm.

4 Experimental results

4.1 The mutual fate control game

Experiments took place at the computer laboratory of the Max Planck
Institute for Economics in Jena, Germany, and at the computer labora-
tory of the University of Bonn, Germany. In total, 160 mostly undergrad-
uate students participated in the computerized experiment, using zTree
software (Fischbacher, 1999). Subjects were recruited using ORSEE
software (Greiner, 2004). Thus, we observe, in sum, 20 pairs for each
condition. Subjects needed approximately 60 minutes for the entire ex-
periment (35 minutes in the control condition).8 During the experiment,
participants received payoffs in experimental currency units, which were
converted afterwards to euros. Average earnings were quite surprising.
Including a 2.50 euro show-up fee, on average, LI players earned 8.30

8Due to timing problems of participants, we had to dismiss 29 subjects across
all treatment conditions before they performed in the digit span test. Therefore, we
have no approximation of their short-term memory capacity.
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euros (standard deviation 1.26), RI players only slightly more, at 8.70
euros (sd 1.33), while RI+ players were paid 16.30 euros (sd 1.99), and
CO players 5.50 euros (sd 2.13).

It is not surprising that the comparison of the first phase frequencies
of PEC for LI players and RI players suggests that the richer information
level facilitates coordination. Throughout the first 10 periods of the first
phase, 55% of the RI players chose the PEC. For the last 10 periods, this
number increased to 67%. On the other hand, LI players started with
49.5% for the first ten periods and ended with 60.8%.9 The latter results
correspond roughly to findings that have been previously reported (e.g.,
Mitropoulos, 2001). Figure 3(i) shows the development for 5 period
averages of the PEC across the first phase. However, the result changes
dramatically if we consider the coordination frequencies for RI+ players.
These players chose the PEC in 46% of the cases across the first ten
periods and in 56.8% across the last ten periods. Note that there is a
significant difference between the averages of RI and RI+ players for the
first ten periods and the last ten periods, while the other frequencies
do not differ significantly.10 It seems that the additional incentive for
RI+ players, that is, the prospect of earning significantly more in later
phases of the experiment, hampers coordination in the first phase. We
will discuss this point later in more depth.

Quite surprisingly, in the second phase of the MFC, the LI players
outperform RI players in terms of the frequency of PEC. Figure 3(ii)
shows the development for the 5 period averages of the PEC across the
second phase. In the last 10 periods, the frequency of LI players signifi-
cantly exceeds that of RI players (59% for RI and 67.3% for LI players),11

although subjects under both conditions start with an insignificant dif-
ference in the frequency of PEC in the first 10 periods (53% for RI and
55.5% for LI players). Moreover, the averages for RI+ players do not
progress across the entire second phase. For the first 10 periods, 47%
of players chose the PEC. This rate remained at 47% for the last 10
periods. Both rates are significantly lower than the corresponding rates
for the RI and the LI players.12

Within the last ten periods of the first phase, the frequency of RI
pairs who successfully coordinated on the Pareto efficient cell (52%) ex-
ceeded the frequency of LI pairs (44.5%) and the frequency of RI+ pairs

9Applying two-sided t-tests, all differences differ significantly for p < 0.05, except
for the comparison of the first ten periods for RI and RI+ players.

10For the former comparisons, p < 0.05 for two-sided t-tests; for the latter com-
parisons, p > 0.05 for two-sided t-tests.

11For the former comparison, p = 0.49 for a two-sided t-test; for the latter com-
parison, p = 0.016 for a two-sided t-test.

12For all comparisons, p < 0.05 for one-sided t-tests.
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Figure 3: Average frequency of PEC choice in (i) the first phase MFC,
(ii) the second phase MFC

(34.5%). In contrast, within the last ten periods of the second phase,
56% of LI pairs coordinated on the Pareto efficient cell, while 47.5%
of RI pairs and only 28% of RI+ pairs chose mutual PEC. Moreover,
among those LI and RI players who reached PEC in the first phase (sec-
ond phase), approximately 7

10
(4

5
) mutually chose PEC. However, among

those RI+ players who reached PEC in the first phase (the second phase),
only 3

5
(3

5
) mutually chose PEC.

The important question is why RI players perform so poorly in the
second phase and why RI+ players perform so poorly throughout both
phases of the MFC. Figure 4 offers important insights into both ques-
tions. The horizontal axis of Figure 4(i) shows the number of cells of the
MFC within which players found themselves during the entire first phase
of the experiment, while the vertical axis provides the cumulative fre-
quency of players who experienced, at most, this number of cells. Thus,
the figure indicates the proportion of players who experienced all cells
of the game. This frequency is less informative for LI players since they
cannot disentangle cells and, therefore, cannot understand the structure
of the game. Yet, in order to understand the structure of the MFC,
RI players and RI+ players have to observe all four cells. For the first
phase, one can see that more than 60% of RI players could not under-
stand the structure of the MFC since they did not observe all four cells.
On the other hand, the majority of RI+ players observed all four cells
of the game. Only 35% of these players were not able to understand the
game’s structure when they observed three or fewer cells. As shown in
Figure 4(ii), the situation becomes even worse in the second phase. More
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than 70% of RI players did not observe all four cells. In contrast, the
large majority of RI+ players still explored all four cells. It seems that
the additional incentive the RI+ players had increasing their prospec-
tive earnings led these players to conduct a very systematic search in the
first and second phase of the experiment. That the payoff structure of a
game crucially influences behavior has been well documented in previous
experiments (Merlo & Schotter, 1999).
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Figure 4: Cells explored in (i) the first phase MFC, (ii) the second phase
MFC

Does less information facilitate successful coordination in the MFC?
LI players outperform RI players in the second phase of the experiment;
RI players outperform RI+ players, that is, players who explored the
structure of the game most systematically, in both phases of the MFC.
It seems that better informed players fall victim to a curse of knowl-
edge. The analysis of the answers to the open questions for the first
and the second phase illustrates, for all treatment conditions, that a
majority of players hypothesize a direct relation between their own ac-
tions and their own payoffs. This result is not surprising for LI players
since they do not receive any information about their counterparts. In
particular, 67.5% of the statements after the first phase (62.5% of state-
ments after the second phase) describe a pure coordination game, that
is, a relation between individual actions and individual payoffs. Yet, the
statements of RI players and those under the RI+ condition demonstrate
that their additional information does not prevent them from represent-
ing the game “egocentrically”. More specifically, after the first phase,
72% of the statements (after the second phase, 77.5% of the statements)
of RI players and 72% of the statements after the first phase (67.5% of
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the statements after the second phase) of RI+ players refer to a direct
relation between their own actions and their own payoffs. This result
follows the robust findings of the psychological literature about the illu-
sion of control; it has been well demonstrated that subjects persistently
believe that they can control or at least influence their outcomes even
in situations in which this is not true (e.g., Langer, 1975).

Thus, an egocentrically biased representation of the game deceases
the performance in the MFC. One could argue that players simply apply
some mixed strategies of punishments and rewards.13 Yet, applying the
Wald-Wolfowitz one-sample run tests, we can analyze whether the num-
ber of sequences in which the same action has been played corresponds
with the expected number of sequences under a mixture of strategies
(for details see Mookherjee & Sopher, 1994). We find that a lot of play-
ers show too much inertia for the mixed strategy hypothesis to have
explanatory power. For the first phase, we have to reject the mixed
strategy hypothesis for 18 LI players, 25 RI players, and 18 RI+ players
(out of 40 players within each treatment condition).14 For the second
phase, we reject the mixed strategy hypothesis for 21 LI players, 22 RI
players, and 16 RI+ players.15

Based on this observation, it seems likely that the estimation of de-
cision algorithms indicates that the structure of these algorithms differs
quite substantially across treatment conditions. For the approximation
of the decision algorithm, we run an individual fixed effect logit regres-
sion on the attractiveness of action b; thus, we estimate the attractive-
ness in the range [0, 1], with the latent model as defined in equation
(1). Choices from phase two are indicated by the dummy variable two.
Thus, the interaction of coefficients with two indicates the learning across
phases, for example, ρ1 × two tests whether there is a difference in the
influence of Aj

i (t−1) between phases one and two. ρ2×two and ρ3×two
test the other interaction effects. We set the ex-ante attractiveness of
b prior to the first periods to 0.5. As in the original EWA model by
Camerer and Ho (1999), we restrict our analysis to a simple autore-
gressive process with one period lag length (AR(1)). Asterisks indicate
levels of significance.16 We report the number of (clustered) observations
(nobs); goodness of fit is reported by the log-likelihood (logLik) and the
Akäıke information criterion (AIC). Table 3 reports the result of our

13Of course, this assumes that players know which action punishes or rewards their
counterpart.

14p > 0.05, Wald-Wolfowitz one-sample run tests.
15p > 0.05, Wald-Wolfowitz one-sample run tests.
16∗ significant at a 10% level, ∗∗ significant at a 5% level, and ∗∗∗ significant at a

1% level.
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LI RI RI+

ρ1 −0.151 0.243∗ −0.009
ρ2 0.331∗∗∗ 0.542∗∗∗ 0.053
ρ3 0.468∗∗∗ 0.34∗∗ 0.117

ρ1 × two 0.156 −0.02 −0.056
ρ2 × two −0.2∗ 0.124 0.012
ρ3 × two 0.156 0.14 0.052

nobs 40 40 40
logLik −4158 −4427 −4093
AIC 8336 8874 8205

Table 3: Coefficients of the attractiveness of b in the MFC

estimations.
The results for the estimations of the coefficients show that the struc-

ture of the decision algorithms differ quite substantially across treat-
ment conditions. We failed to characterize the decisions algorithms of
RI+ players in the framework of the EWA. Considering the poor perfor-
mance of RI+ players throughout the two phases of the MFC, it seems
likely that they develop very individual strategies and, therefore, fail
to coordinate their actions Pareto-efficiently. Unlike RI+ players, we
can estimate the decision algorithm for RI players in the framework of
the EWA. The significant ρ1 indicates an autoregressive element in their
decision algorithms. Yet, they fail to learn the ws/lc strategy, which
predicts ρ2 > 0 and ρ3 = 0. Rather, we find a mixed form of reinforce-
ment learning, for example, ρ3 > 0, and belief learning, for example,
ρ2 > 0. It is important to stress that there are not any significant in-
teraction effects for the second phase. Thus RI players rarely change
the structure of their decision algorithm from phase one to phase two.
The estimated decision algorithm for LI players shows similar patterns
for ρ2 and ρ3. However, for LI players, we find some learning across
phases, since we have a significant ρ2 × two. Quite importantly, there
is an insignificant coefficient ρ1 for the first and second phases in which
LI players indicate myopic responses. Therefore, we have to stress that
the players who have the least information about the game, that is, LI
players, develop the least complex decision algorithm and are able to up-
date the algorithm across phases. RI players who develop more complex
decision algorithms do not learn across phases. Finally, RI+ players, for
example, players whose majority systematically explores all cells of the
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game, develop very individual decision algorithms which we could not
identify within the EWA.

The short-term memory-capacity approximated by the results of the
Wechsler digit span tests exerts very little influence on the performance
in the game. There are not any significant correlations between indi-
vidual Wechsler digit span test result and the achieved points in any of
the conditions or phases. If we control for the influence of the result ob-
tained in the Wechsler test by the other player, or the sum of the results
obtained by both players, there is not any significant correlation with
the points yielded in the games.17 The result suggests that the ability
to precisely recall a larger number of periods does not facilitate PEC.

4.2 The fate control / behavior control game

The analysis of the average frequency of the PEC for the third phase of
the experiment indicates that previous experience playing two phases of
the MFC under the minimal information setting has a clear influence on
the performance in the FCBC. Throughout the first 10 periods of the
third phase, the frequency of PEC for LI players is significantly lower
than for CO players, whereas the frequencies for RI players and RI+
players differ insignificantly from the frequency for CO players. Specially,
68% of CO players choose the PEC, 61.5% of RI players, 60% of RI+
players, and 52.5% of LI players.18 For the last 10 periods, the frequency
at which CO players choose PEC increases to 77%, while 74.5% of RI
players, 66.5% of the RI+ players, but only 54% of the LI players choose
the PEC. The frequency of PEC for CO players significantly exceeds the
frequencies for LI players and RI+ players,19 while there is no significant
difference between the frequency for RI players and CO players.20 Figure
3(i) shows the development for the 5 period averages of the PEC across
the third phase. The findings suggest two effects. First, the previous
experience of the MFC significantly decreases the performance in the
FCBC game if played under the minimal information setting. Second,
the increasing payoff scheme of RI+ players significantly decreases the
performance in the FCBC. We will discus this point further below.

The effect of previous experience vanishes in the fourth phase of the
experiment. More specifically, we see that players under all conditions
start between 40% and 50% (i.e., RI players started with 40.5% for the

17All tests yield p > 0.05; Pearson’s product-moment correlation test; one-sided.
18The comparison of the latter number with the frequency of the CO players is

significantly smaller for p < 0.001 for a one-sided t-test, while all other comparisons
yield p > 0.05 for two-sided t-tests.

19p < 0.001 for one-sided t-tests.
20p = 0.56 for one-sided t-tests.
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first ten periods, RI+ players started with 43% for the first ten peri-
ods, CO players started with 44.5% for the first ten periods, and LI
players started with 50% for the first ten periods).21 Within the last
ten periods of the fourth phase, the frequencies of PEC for RI players
and for LI players increase to 64%, and 61.5%, respectively, while the
frequencies for RI+ players and for CO players remain at 47.5%, and
48.5%, respectively. Note that the frequencies of the two former con-
ditions differ significantly from those of the latter two.22 Figure 3(ii)
shows the development of the 5 period averages of the PEC across the
fourth phase.

●

●

● ●

●

●

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i) third phase

period

fr
eq

ue
nc

y 
of

 p
ec

● RI
RI+
LI
CO

●

●

●
●

● ●

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(ii) fourth phase

period

fr
eq

ue
nc

y 
of

 p
ec

● RI
RI+
LI
CO

Figure 5: Average frequency of PEC choice in (i) the third phase FCBC,
(ii) the fourth phase FCBC

With respect to the cumulative frequency of cells which are explored
by the players in the third and fourth phase of the experiment, we find
that RI players rarely explore the structure of the game. Figure 6(i) (Fig-
ure 6(ii)) shows the cumulative frequency of cells which are explored by
the players in the third phase (fourth phase). Of course, this frequency
is less important for LI and CO players since they cannot disentangle
cells. Yet, only 30% of RI players in the third phase (35% in the fourth
phase) observed all four cells of the payoff matrix, whereas 60% of RI+
players in the third phase (45% in the fourth phase) observed all four
cells. Again, the results indicate that RI+ players explored the structure
of the game much more accurately than RI players. However, it seems
that accurate exploration does not enhance performance if played under

21All frequencies differ insignificantly for p > 0.05, two-sided t-tests.
22p < 0.001, one-sided t-tests.
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the rich information setting.
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Figure 6: Cells explored in (i) the third phase FCBC, (ii) the fourth
phase FCBC

We tested whether the number of sequences in which the same action
has been played corresponds with the expected number of sequences
under a mixture of strategies applying the Wald-Wolfowitz one-sample
run tests. Yet again, we find that a significant number of players show
too much inertia to support the mixed strategy hypothesis. We have to
reject the mixed strategy hypothesis for 17 LI players, 28 RI players, 16
RI+ players, and 12 CO players (out of 40 players within each treatment
condition) in the third phase, and for 21 LI players, 29 RI players, 12
RI+ players, and 17 CO players in the fourth phase.23 For the analysis
of the decision algorithms, we have to consider that there are two types
of players in the FCBC. For one type of player, denoted as the strong
player, there is a best response to the action taken by the counterpart,
while for the other type of player, denoted as the weak player, any action
choice is part of a equilibrium. Weak players find themselves in the
same strategic situation as in the MFC since their stage game payoffs
are exclusively determined by their counterparts’ actions.

We run separate individual fixed effect logit regressions for both types
of players, analyzing the attractiveness of action b with the latent model,
as defined in equation (1). Again, choices from phase four are indicated
by the dummy variable four. Thus, the interaction of coefficients with
four indicates the learning across phases. The ex ante attractiveness
of b is set to 0.5. Again, we restrict our analysis to a simple autore-

23p > 0.05, Wald-Wolfowitz one-sample run tests.
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LI RI RI+ CO

strong players

ρ1 −0.048 0.812∗∗∗ −0.404∗ −0.89∗∗∗

ρ2 −0.399∗∗ 0.9∗∗∗ 0.626∗∗∗ 0.459∗∗∗

ρ3 0.148 4.46 −0.138 0.26
ρ1 × four 0.059 −0.342 0.505∗∗ −0.091
ρ2 × four 0.354∗ 0.637∗∗∗ −0.233 0.0472
ρ3 × four −0.209 −4.255 0.453 0.174

nobs 20 20 20 20
logLik −2134 −3687 −2160 −2194
AIC 4287 7397 4339 4408

weak players

ρ1 −0.238 −1.046∗∗∗ −0.425∗∗ −0.85∗∗∗

ρ2 0.45∗∗∗ 1.331∗∗∗ 0.0837 0.294∗∗

ρ3 0.184 −0.358 0.168 0.448∗∗

ρ1 × four 0.456∗∗∗ 0.215 0.001 0.39∗∗

ρ2 × four 0.146 0.288 0.263 0.142
ρ3 × four −0.055 0.284 0.878∗∗∗ −0.38∗∗

nobs 20 20 20 20
logLik −2032 −2520 −2122 −2166
AIC 4085 5060 4263 4351

Table 4: Coefficients of the attractiveness of b in the FCBC

gressive process with one period lag length; asterisks indicate levels of
significance;24 we report the number of observations (nobs); goodness of
fit is reported by the log-likelihood (logLik) and the Akäıke information
criterion (AIC). Table 4 reports the result of our estimations.

The interpretation of the estimation results appears to be difficult.
Most importantly, we find that both types of the LI players retained a
myopic response in phase three, while the results for CO players show
a significant ρ1. Only in phase four do the results for weak LI players
indicate a significant ρ1. Thus, it seems that LI players suffer from
their earlier experimental experience because they fail to structure their

24∗ significant at a 10% level, ∗∗ significant at a 5% level, and ∗∗∗ significant at a
1% level.
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decision algorithms in terms of the EWA. On the other hand, for RI and
RI+ players we estimated decision algorithms with significant coefficients
ρ1, both for phase three and four. Strong RI, RI+ and CO players employ
decision algorithms in which ρ1 and ρ2, that is, autoregressive elements
and some belief learning, exercise a significant influences. Yet, while
rich informed players learn across phases, that is, there are significant
ρ2 × four and ρ3 × four for RI and RI+, strong CO players fail to do
so. Rather, there is an adjustment of weak CO players to phase four,
that is, ρ1× four and ρ3× four. Furthermore, as in the MFC, weak RI
players did not update their behavior in any significant way from phase
three to phase four.

Summarizing the results for the FCBC, we find evidence that players
who successfully adapted the structure of their decision algorithms to the
MFC, indeed suffer from this experience in the third phase. However,
the data indicate that, while the experiment continues, that is, in the
fourth phase of the experiment, this previous experience facilitates PEC
for players in the minimal information setting, whereas for those in a
rich information setting, successful behavior does not depend on the
systematic exploration of game cells.

5 Discussion

The aim of our study was to investigate whether we can find a difference
in the estimated structure of a decision algorithm depending on the in-
formation received about the environment. Our results suggest that the
degree of information crucially influences the way players decide in the
experiment. Quite surprisingly, all decision algorithms show that, under
all treatment conditions, players fall prey to an egocentric representa-
tion of the MFC. We find very simple reinforcement learning for players
in the minimal information setting. Therefore, it seems plausible to as-
sume that these players learned to respond myopically. Since we observe
significant autoregressive elements in their decision algorithms, the data
indicate that players in the rich information setting develop much more
complex representations of the MFC. This, however, results in a curse
of knowledge; more complex decision rules are less robust with respect
to minor changes in the game structure, that is, if the cell permutation
between the first and the second phase. As a consequence, less informa-
tion facilitates Pareto-efficient coordination in the environment of the
MFC, while additional information makes this more difficult. More-
over, institutional incentives, that is, the increasing payoff scheme of the
plus treatment promotes the systematic exploration of the game space.
However, better cognitive abilities, that is, larger short-term memory
capacities, as indicated by the Wechsler digit span test, do not enhance
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performance.
Yet, if the environment changes substantially, that is, the cell permu-

tation shifts between the second and the third phase of the experiment,
players in the minimal information setting suffer from the learned my-
opic response. Here, the more complex decision algorithm of RI and
RI+ players facilitates successful coordination. Again, we find that RI
players are less likely to update the structure of their decision algorithms
in response to minor changes in the structure of the game, that is, across
phases of the FCBC.

In summary, our data suggest that it is very difficult for all subjects to
understand the games since this requires overcoming an egocentric form
of representation. Rather, subjects suffer from an illusion of control. The
way players decide is crucially influenced by the degree of information
they receive about their environment. In general, we demonstrated that
more information and a more systematic exploration of the game space
lead to more complex decision rules. However, the success of simple or
complex learning algorithms depends on the underlying game.
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Appendix: Experimental instructions for LI players25

Thank you for participating in our experiment. We kindly ask you
to refrain from any public announcements and attempts to communicate
directly with other participants. In case you violate this rule, we will
have to exclude you from this experiment. If you do have any questions,
please raise your hand and one of the persons who run the experiment
will come to your place and clarify your questions.

In this experiment, you will be assigned randomly and anonymously
in groups of two participants. In total, you will interact within 120 peri-
ods26 with the same person. All participants received the same instruc-
tions as you did. The 120 periods27 are partitioned into four28 phases of
30 periods each. In each period, you (and also the other person) have to
choose between two actions, a or b, and you will receive a payoff of ei-
ther 0 or 1 ECU per period.29 You will not be told the mechanism which
determines the payoff, but we assure you that only your action and the
action of the other person will determine the payoff. In particular, there
is no random process controlling the payoff. The four30 phases of the
game are different, as the mechanism which determines the payoff for
you and the other person is identical for both of you in the first phase
and changes in the second, third and fourth phase.31 Within each phase,
the mechanism remains unchanged.

After each round, you will receive the information about which payoff
you earned in that round,32 as well as your accumulated payoff so far. At
the end of each phase, you will be asked to describe the mechanism which
controls your payoff. At the end of the experiment, we will exchange all
the ECUs earned at a rate of 1 ECU = 0.08 euros, and pay off the
participants.

25Deviations in the other treatment conditions are indicated by footnotes.
26For CO players “60 periods”.
27For CO players “60 periods”.
28For CO players “two”.
29For RI+ players “and you will receive a payoff. The payoff in the first phase is

either 0 or 1 ECU, in the second phase either 0 or 2 ECU, in the third phase either
0 or 3 ECU, and in the fourth phase either 0 or 4 ECU.”

30For CO players “two”.
31For CO players “and changes in the second phase.”
32For RI and RI+ players additionally “the action the other participant chose,”.
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