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Sergei Vieira Silva, from the Instituto Nacional de Matematica Pura e Apli-
cada in Rio de Janeira, has alerted me to an error in my article "Incentive
Problems with Unidimensional Hidden Characteristics: A Uni�ed Approach",
Econometrica 78 (2010), 1201 �1237. Fortunately, the error does not a¤ect the
validity of the analysis.
The analysis of the paper rests on replacing the notion of a type t in the

usual sense by the notion of a pseudo-type x constructed so that the distribution
G of pseudo-types has a density even though the distribution F of types does
not. Absolute continuity of G is asserted in Lemma 3.1, p. 1215. For the given
de�nition of G, however, this assertion is false; for it to be true, the de�nition
must be modi�ed.
The de�nition of G in the paper takes the map t ! �(t) = t + F (t), from

types to pseudo-types, and sets G := F � ��1: With this de�nition, however, G
is discontinuous whenever F is discontinuous. In the proof of Lemma 3.1, the
assertion that equation (3.9) holds for all x is incorrect. I apologize for the error
and thank Sergei Vieira for pointing it out.
To correct the error, replace the given de�nition of G by one that starts from

equation (3.9), i.e., de�ne G so that

G(x) = x� �(x)

for all x; where �(x) := supsfsj�(s) � xg: With this de�nition, absolute conti-
nuity of G follows from the observation that � is nondecreasing and Lipschitz
with constant 1. Moreover, it is still true that F = G � ��1; which provides the
basis for the subsequent analysis.
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Abstract

The paper develops a technique for studying incentive problems with
unidimensional hidden characteristics in a way that is independent of
whether the type set is �nite, the type distribution has a continuous den-
sity, or the type distribution has both mass points and an atomless part.
By this technique, the proposition that optimal incentive schemes induce
no distortion "at the top" and downward distortions "below the top" is
extended to arbitrary type distributions. However, mass points in the
interior of the type set require pooling with adjacent higher types and,
unless there are other complications, a discontinuous jump in the transi-
tion from adjacent lower types.

Key Words: Incentive Problems, Principal-Agent Models, Hidden Char-
acteristics, General Type Distributions,

JEL Classi�cation: C61, D82, D86

1 Introduction

Incentive problems with unidimensional hidden characteristics have usually been
analysed under the assumption that either the type set is �nite or the type set is
an interval and the type distribution has a continuous, strictly positive density.
These assumptions permit the application of standard optimization techniques,
calculus if the type set is �nite, control theory if the type set is a continuum.
Both assumptions are special. In the space of distributions on the real line,

distributions with �nite supports and distributions with positive densities form
a meager set. These distributions have the special property that the weights
given to di¤erent types are commensurate in the sense that no one type is
in�nitely more important than any other type. This commensurateness property

�For helpful comments and suggestions, I thank Christoph Engel, Alia Gizatulina, Hendrik
Hakenes, and Klaus Ritzberger, as well as a Co-Editor and three referees.
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has played an important role in the analysis of such problems. It is therefore
of interest to know to what extent the results and insights that have been
obtained remain valid when commensurateness fails, in particular, when the
type distribution has both mass points and a continuous part, so that some
types (the mass points) are in�nitely more important than others (the points
at which the distribution has a positive density).
As an example, consider the theory of optimal utilitarian income taxation.

In this theory, the positivity of the optimal marginal income tax for all but
the very highest types is usually explained in terms of a local equity-e¢ ciency
tradeo¤:1 If, for some type, the marginal income tax were zero, then this type�s
labour-consumption pair would be e¢ cient. At the margin, therefore, the e¢ -
ciency loss induced by a small reduction of this type�s labour and consumption
would be negligible relative to the gains from the additional redistribution from
higher types to lower types that is made possible by the induced slackening of
incentive constraints for the higher types. This argument presumes that the
di¤erent types are commensurate. If the type under consideration was a mass
point of the type distribution, it would be "in�nitely" more important than
immediately adjacent higher types that are continuity points of the type distri-
bution. Therefore, one could not presume that the e¢ ciency loss induced by a
small reduction of this type�s labour and consumption is negligible relative to
the gains from the additional redistribution.2 Commensurateness of neighbour-
ing types is also presumed in elasticities interpretations of optimal income tax
formulae in models with a continuum of types.3

The analysis of incentive problems with arbitrary type distributions requires
a new technique. This paper develops such a technique and uses it to pro-
vide a complete characterization of optimal contracts in a principal-agent prob-
lem with unidimensional hidden characteristics, with a single-crossing condition
on preferences, when no restriction is imposed on the type distribution. The
principal-agent problem is chosen because its simplicity facilitates the exposi-
tion. The new technique can, however, be applied to any incentive problem
with unidimensional hidden characteristics and with a single-crossing condition
on preferences. In particular, it can be applied to the optimal income tax prob-
lem.4

For distributions with mass points and a continuous part, two new properties
of optimal incentive schemes are obtained, both of them illustrated in Figure

1See Mirrlees (1971, 1976, 1986), Seade (1977, 1982), Hellwig (2007 a).
2On this point, a referee has commented: "you distort downwards to reduce the information

rents of all types (not just the type that is immediately above)." While it is true that the
weight of the mass point is commensurate with the weight of the set of all higher types, this
observation is of little help when it comes to assessing whether one wants to use a distortion
for type t or a distortion for type t+�t in order to reduce the information rents of types above
t+ �t: Assessments of this sort underlie the Mirrlees formula for the optimal marginal income
tax and the interpretations that this formula has been given.

3Roberts (2000), Saez (2001), Hellwig (2004/2008).
4Because the optimal income tax problem is encumbered by the di¢ culties involved in

characterizing the welfare weights of di¤erent types (Hellwig 2007 a), it is not so well suited
for purposes of illustration of the new technique for dealing with problems involving arbitrary
type distributions.
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Figure 1: An Optimal Incentive Scheme When There is a Mass Point at t

1. First, any mass point below the top of the type set must be pooled with
adjacent higher types. Second, a mass point between the top and the bottom of
the type set is likely to give rise to a discontinuity in the mapping from types to
outcomes.5 Both �ndings are due to the lack of commensurateness between the
mass point and any adjacent higher or lower types that are continuity points
of the type distribution. In terms of local tradeo¤s between allocative and
distributive concerns, e.g. the equity-e¢ ciency tradeo¤ that is discussed in the
literature on optimal income taxation, the di¤erence in relative weights given to
a mass point and to adjacent continuity points of the type distribution implies
that, at the mass point, e¢ ciency concerns are much more important than at
adjacent continuity points of the type distribution. In an income tax model, this
would suggest that the mass point should work signi�cantly more and consume
signi�cantly more than the neighbouring types. With preferences satisfying a
single-crossing condition, however, outcomes must be nondecreasing in types.
Therefore, there cannot be a downward jump above the mass point. Instead,
the monotonicity constraint is binding, and there is pooling of the mass point
with adjacent higher types. By contrast, monotonicity does not preclude an
upward jump as one moves from adjacent lower types to the mass point.6

5The e¤ect can be neutralized by other, non-local considerations requiring the mass point
to be pooled with lower as well as higher types. In the absence of such concerns, however,
there must be an upward jump.

6However, there is no discontinuity in payo¤s. Incentive compatibility precludes any dis-
continuity in the dependence of payo¤s on types. At the discontinuity point, left-hand and
right-hand limits of optimal outcomes lie on the same indi¤erence curve for the critical type.
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The paper also considers those properties of optimal incentive schemes that
have been discussed in the literature. Regardless of the structure of the type
distribution, optimal incentive schemes involve no distortion "at the top" and
downward distortions "below the top" of the type distribution. In the more gen-
eral setting of this paper, the latter result requires a new argument. Whereas
the desirability of downward distortions "below the top" has traditionally been
derived from tradeo¤s imposed by the �rst-order conditions for incentive com-
patibility, at a mass point of the type distribution, the argument must rely on
the second-order conditions. As explained above, the lack of commensurateness
between a mass point and adjacent higher or lower continuity points of the type
distribution implies that monotonicity conditions, i.e., second-order conditions
for incentive compatibility are binding. The mass point must be pooled with
adjacent higher types, and the analysis must show that, for all types in the pool,
outcomes are distorted downwards from e¢ ciency.
The paper builds on two technical innovations. First, for an arbitrary model

with unidimensional hidden characteristics, a change of variables can be used to
rede�ne the notion of "type" in such a way that the original incentive problem
is transformed into a new one, where the distribution of the "rede�ned types"
has a density. This density need not be continuous. However, from Clarke�s
(1976, 1983) version of the maximum principle under minimal hypotheses, we
know that this is not a problem. The application of control theoretic methods
does not require continuity of the Hamiltonian with respect to the exogenous
parameter, i.e., the agent�s type. It is important, however, to verify that the
change of variables have no marterial e¤ect on the solution to the incentive
problem under consideration.
Second, for control problems with monotonicity constraints, a version of

the maximum principle holds even if the map from types to outcomes is not
continuous. According to this result, which is established in Hellwig (2008),
one may think of the "slope" of the map from types to outcomes as a control
variable even though this map may have a nontrivial singular component, and
its "slope" may be unbounded. The maximum principle requires that, regardless
of whether this "slope" is �nite or in�nite, it should not be possible to raise the
value of the Hamiltonian by changing it. Thus, whenever the map from types
to outcomes is strictly increasing, the associated costate variable must be zero.
Previous work on incentive problems with unidimensional hidden character-

istics has assumed that the map from types to outcomes is piecewise continu-
ously di¤erentiable. This assumption facilitates the control theoretic treatment
of monotonicity constraints. With piecewise continuous di¤erentiability, the
slope of the map from types to outcomes can be treated as a control variable;
monotonicity of outcomes is equivalent to requiring this control variable to take
nonnegative values.7 Because the map from types to outcomes is endogenous,
however, the assumption of piecewise continuous di¤erentiability is problematic.
The technique developed in this paper provides a way of doing without it.
The generalization of the analysis to allow for type distributions with mass

7This approach was pioneered by Guesnerie and La¤ont (1984).
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points as well as a continuous part is not just a matter of mathematical gen-
erality. Such type distributions arise naturally in quasi-linear models in which
the agent can get information about his type before he signs a contract. In such
models, being uninformed is equivalent to having a type equal to the mean of
the type distribution. Thus, if there is a positive probability that the agent does
not learn his type at all, then, from the principal�s perspective, the contracting
problem can be treated as an incentive problem with hidden characteristics in
which the type distribution has a mass point at its mean.8

In the following, Section 2 formulates the agency problem with hidden char-
acteristics and states the main results. Section 3 uses a change of variables in
order to make the problem amenable to control theoretic methods. Section 4
uses the maximum principle for control problems with monotonicity constraints
to characterize the solutions to the agency problem and prove the main results.

2 A Principal-Agent Problemwith Hidden Char-
acteristics

2.1 Statement of the Problem

A principal wants an agent to produce some output y � 0 in return for a wage
payment w � 0: The payo¤s from the pair (w; y) are y�w for the principal and
u(w; y; t) for the agent, where t 2 R is a productivity parameter. The function
u is assumed to be twice continuously di¤erentiable, nondecreasing in w and t,
nonincreasing in y; and strictly quasi-concave in w and y jointly. The agent�s
utility function also satis�es u(0; 0; t) = 0 for all t; limy!0 uy(w; y; t) = 0 and
limy!1 uy(w; y; t) = �1; uniformly in w; for all t; as well as

uw(w; y; t) > 0; uy(w; y; t) < 0; (2.1)

and
@

@t

juy(w; y; t)j
uw(w; y; t)

� 0 (2.2)

for all w > 0; y > 0; and t:9 The single-crossing condition (2.2) is imposed as a
weak, rather than a strict inequality.
The principal is assumed to have all the bargaining power. If he o¤ers the

agent a contract (w; y), the agent can only accept or reject this o¤er. The
agent�s payo¤ from rejecting the principal�s o¤er is zero. Thus, under complete

8 In the literature on information acquisition and incentive contracting, Szalay (2005) has
the very technology considered in the text, but assumes that information is only acquired
after the contract has been signed. Crémer et al. (1998 a, 1998 b) assume that information is
acquired before the contract is o¤ered, but they also have a further stage at which the agent
learns and uses the information anyway; in their analysis therefore, being uninformed is not
the same as having a type equal to the mean of the type distribution.

9This utility speci�cation encompasses the commonly used quasi-linear speci�cation u =
w � g(y)=t; for the quasi-linear speci�cation, the assumptions reduce to the conditions that
g(0) = g0(0) = 0; g0(y) > 0 and g00(y) > 0 for y > 0, and limy!1 g0(y) =1:

5



information, the principal would hire the agent at a wage that just compensates
him for the disutility from working, without letting him share in the surplus
from production.
However, there is incomplete information: Whereas the agent knows t; the

principal thinks of t as the realization of a random variable ~t, to which he
attributes a probability distribution F: The support T of the distribution F is
assumed to be compact, with minimum t0 and maximum t1:
Given his lack of information, the principal o¤ers a menu of contracts and

lets the agent choose a contract from the menu or reject the principal�s o¤er
altogether. A contract menu is a pair (w(�); y(�)) of integrable functions on
T such that, for any t 2 T; (w(t); y(t)) is the contract, i.e., the wage/output
combination that is chosen by the agent when his productivity parameter is t:
The principal�s problem is to choose the contract menu (w(�); y(�)) so that his
expected net payo¤, Z

[y(t)� w(t)]dF (t); (2.3)

is maximized subject to the incentive compatibility condition that

u(w(t); y(t); t) � u(w(t0); y(t0); t) (IC)

for all t and t0 in T; and subject to the individual-rationality condition that

u(w(t); y(t); t) � 0 (IR)

for all t in T:10 A contract menu that satis�es the incentive compatibility and
individual-rationality conditions is said to be admissible. A contract menu that
maximizes the principal�s expected net payo¤ (2.3) subject to the incentive
compatibility and individual-rationality conditions is said to be optimal.

2.2 Distortions in Optimal Contracts

Conceptually, the principal�s problem is a standard incentive problem with hid-
den characteristics. Textbook treatments are provided by Fudenberg and Tirole
(1991), Mas-Colell, Whinston, Green (1995), or La¤ont and Martimort (2001)
under the assumptions that T is a �nite set or that T is an interval and F has a
density that is strictly positive and continuous on T . Here, I only assume that
T is compact.
Let (w(�); y(�)) be an optimal contract menu and let

v(�) := u(w(�); y(�); �) (2.4)

10Condition IR presumes that the principal does not prefer to make an o¤er which, for some
t; the agent wants to reject. This presumption involves no loss of generality: Under the given
assumptions, a contract menu (w(�); y(�)) with the property that, for some t 2 T; the agent
rejects the principal�s o¤er is payo¤-equivalent to the contract menu that is obtained if, for
the rejecting types, the contract o¤ers (w(t); y(t)) are replaced by (0; 0); this latter contract
menu satis�es the participation constraint IR for all t.
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be the associated indirect utility function for the agent. To assess the e¢ -
ciency properties of (w(t); y(t)); the literature compares (w(t); y(t)) to the pair
(w�(t; v(t)); y�(t; v(t))) that provides the person with productivity parameter t
with the utility v(t) at the lowest net resource cost; formally, for any t and v;

(w�(t; v); y�(t; v)) = arg max
y�0;w�0

fy � wju(w; y; n) � vg: (2.5)

The pair (w�(t; v); y�(t; v)) is fully characterized by the �rst-order condition

uw(w
�(t; v); y�(t; v); t) + uy(w

�(t; v); y�(t; v); t) = 0: (2.6)

In those cases that have been treated in the literature, the optimal (w(�); y(�))
and v(�) have been shown to exhibit the following properties.

Property A There is no distortion at the top:

If F (ft1g) > 0; then

(w(t1); y(t1)) = (w
�(t1; v(t1)); y

�(t1; v(t1))); (2.7)

if F (ft1g) = 0; then

lim
k!1

(w(tk); y(tk)) = (w�(t1; v(t1)); y
�(t1; v(t1))) (2.8)

for any sequence ftkg in T that converges to t1 from below.

Property B There are downward distortions below the top:

For any t 2 T \ [t0; t1),

(w(t); y(t))� (w�(t; v(t)); y�(t; v(t))): (2.9)

The following theorem extends the results in the literature to the more
general setting considered here. Some care must be taken with the formula-
tion because the choice of an optimal contract menu involves a certain arbi-
trariness, due to the fact that the principal�s objective function (2.3) is un-
changed if the contract menu (w(�); y(�)) is modi�ed on a set of probability
zero. The arbitrariness is inessential, however, because the joint distribution
of wage/output combinations and types is una¤ected by such a modi�cation. I
will say that two contract menus (w(�); y(�)) and (w0(�); y0(�)) are equivalent if
(w(t); y(t)) = (w0(t); y0(t)) for F -almost all t: Two contract menus (w(�); y(�))
and (w0(�); y0(�)) are said to be strongly equivalent if they are equivalent and,
in addition, u(w(t); y(t); t) = u(w0(t); y0(t); t) for all t; i.e., they yield the same
payo¤ to every type of the agent.

Theorem 2.1 For any optimal contract menu (w(�); y(�)); with associated indi-
rect utility function v(�) for the agent, there exists a strongly equivalent contract
menu ( �w(�); �y(�)) (which is also optimal) and there exists t̂ 2 [t0; t1] such that
( �w(�); �y(�)) is nondecreasing and, moreover, the following hold:
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(a.1) If F ([t̂; t1]) > 0; then, for all t 2 [t̂; t1];

( �w(t); �y(t)) = (w�(t; v(t)); y�(t; v(t))) = ( �w(t1); �y(t1)) (2.10)

(a.2) If F ([t̂; t1]) = 0; i.e., if t̂ = t1 and F (ft1g) = 0; then

lim
k!1

( �w(tk); �y(tk)) = (w�(t1; v(t1)); y
�(t1; v(t1))) (2.11)

for any sequence ftkg in T that converges to t1 from below.
(b) For any t 2 [t0; t̂),

( �w(t); �y(t))� (w�(t; v(t)); y�(t; v(t))): (2.12)

Corollary 2.2 If, at the point (w; y; t) = (w�(t1; v(t1)); y
�(t1; v(t1)); t1); the

single-crossing condition (2.2) holds with a strict inequality, then the critical
t̂ in Theorem 2.1 coincides with t1; and the contract menus (w(�); y(�)) and
( �w(�); �y(�)) exhibit Properties A and B.

For utility functions satisfying the single-crossing condition (2.2) with a strict
inequality, Corollary 2.2 shows that, regardless of the form of the type distrib-
ution, optimal contract menus must have Properties A and B, no distortion at
the top and downward distortions below the top of the type distribution. If the
single-crossing condition (2.2) holds only as a weak inequality, optimal contract
menus need not literally have Properties A and B. In this case, however, one
still gets a decomposition of the type set into an upper part, T \ [t̂; t1]; where
the optimal contract is e¢ cient, and a lower part, T \ [t0; t̂); where the optimal
contract is distorted downwards from e¢ ciency. We still have no distortion at
the top, but "the top" now can be an entire interval [t̂; t1]: If this is the case,
then, by statement (a.1) of the theorem, the contract ( �w(t); �y(t)) is the same for
all t in the interval [t̂; t1]: Because this contract is e¢ cient for all these types,
the single-crossing condition (2.2) must locally hold as an equation, i.e., one
must have

@

@t

juy(w; y; t)j
uw(w; y; t)

(w�(t1; v(t1)); y
�(t1; v(t1)); t) = 0 (2.13)

for all t 2 [t̂; t1]: Conversely, if, locally, at (w�(t1; v(t1)); y�(t1; v(t1)); t); the
single-crossing condition (2.2) is strict, one must have t̂ = t1; so that the optimal
contract menu satis�es Properties A and B as speci�ed. The corollary makes
this converse explicit.
Theorem 2.1 and Corollary 2.2 provide a positive answer to the question,

which has been raised in the literature on optimal taxation,11 whether Property
A holds if the type distribution has a density and the value of the density "at
the top" is equal to zero. There is no need to assume that the density is strictly
positive at t1. To understand the underlying logic, consider the case where F
has a continuous density f and u takes the form

u(w; y; t) = w � 
(y
t
); (2.14)

11Brett and Weymark (2003).
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which was used by Mirrlees (1971). If a �rst-order approach to incentive compat-
ibility is valid, an optimal contract menu must satisfy the optimality condition

f(t)(1 + uy( �w(t); �y(t); t)) = (1� F (t))uyt( �w(t); �y(t); t); (2.15)

i.e.,

f(t)(1� 1
t

0(

y

t
)) = (1� F (t)) 1

t2

�

00(

y

t
)
y

t
+ 
0(

y

t
)
�
: (2.16)

For any sequence ftkg that converges to t1 from below, the ratio 1�F (tk)
f(tk)

con-

verges to zero.12 Along such a sequence, therefore, 1
tk

0( y

tk
)) must converge to

one, i.e., the wedge distorting the output level of type tk vanishes. If one cannot
just rely on a �rst-order approach, the argument is more complicated, but the
economic logic is the same: Near t1; distortions are kept small because the ratio
1�F (t)
f(t) of the weight of the set of types above t from whom the principal can
extract more rents as a result of a distortion at t and the density of the type t
that is a¤ected by the distortion is close to zero. As t converges to t1, therefore,
the tradeo¤ between the e¢ ciency loss and the rent extraction gain from the
distortion at t becomes degenerate.
A referee has commented that Property A depends on the assumption that

t1 is known and �nite. If t1 = 1 and F (ft1g) = 0; the e¢ cient pair in (2.8) is
not well de�ned, but, in the formulation of Property A, (2.8) can be replaced
by the requirement that

lim
t"t1

juy( �w(t); �y(t); t)j
uw( �w(t); �y(t); t)

= 1: (2.17)

Condition (2.17) is equivalent to (2.8) if t1 < 1 and can also be applied when
t1 =1:
However, with t1 = 1; the ratio 1�F (t)

f(t) need not go to zero as t becomes
large. Adapting an example of Diamond (1998), suppose that, above some
threshold, F is a Pareto distribution, i.e., 1 � F (t) = t�� for some � > 0; so
that the ratio 1�F (t)

f(t) = t
� goes out of bounds with t. If u takes the form (2.14)

with 
(yt ) = (
y
t )
q for some q > 1; (2.16) can be shown to imply

1

t

0(

y

t
) =

�

q + �
: (2.18)

For the given utility speci�cation, the marginal rate of substitution juy( �w(t);�y(t);t)j
uw( �w(t);�y(t);t)

is just equal to the term 1
t 

0(yt ) on the left-hand side. Condition (2.18) requires

this term to be constant and less than one, which is incompatible with (2.17).
In this case, Property A does not hold.

12Because 1 � F (t1) = 0; this claim is trivial if f(t1) > 0: More generally, 1 � F (t1) = 0
implies limt"t1 ln(1 � F (t)) = �1: Therefore, limt"t1

d
dt
ln(1 � F (t)) = �1 and, hence,

limt"t1
1�F (t)
f(t)

= 0;
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The crucial di¤erence between this example and Theorem 2.1 is in the be-
haviour of the ratio 1�F (t)

f(t) when t converges to t1. In the example, this ratio
goes out of bounds, in the setting of Theorem 2.1, with a compact type set, it
necessarily goes to zero as t converges to t1:For the utility speci�cation (2.14),
the arguments of Werning (2007) imply that, even with t1 = 1, Property A,
with (2.17) replacing (2.8), is obtained if 1�F (t)tf(t) goes to zero as t ! 1 and if

the relative curvature 
00 yt

0 of the e¤ort cost function is bounded: I conjecture

that this is generally true whenever uyt
uy

is uniformly bounded and 1�F (t)
f(t) goes

to zero as t becomes large. Property A is properly understood as the statement
that, near the top of the type distribution, the tradeo¤ between distributive and
allocative concerns is degenerate if the ratio 1�F (t)

f(t) is close to zero. Relative to
the density of the type t that is a¤ected by a distortion at t; the weight of the
set of types above t from whom the principal can extract more rents as a result
of the distortion at t is close to zero. Therefore, it is undesirable to have any
signi�cant distortion.

2.3 Mass Points, Pooling and Discontinuities in Optimal
Contract Menus

The following results establish some additional properties of optimal contract
menus. These properties arise only when the type distribution has both mass
points and a continuous part.

Theorem 2.3 Let (w(�); y(�)) be any optimal contract menu, and let ( �w(�); �y(�))
and t̂ 2 [t0; t1] be the associated strongly equivalent contract menu and critical
type as given by Theorem 2.1. If F (ftg) > 0 for some t 2 [t0; t̂); there exists
�t 2 (t; t̂] such that, on the interval [t; �t); the functions �w(�); �y(�); and �y(�)� �w(�)
are constant; in particular, if F ((t; �t)) > 0; the menus (w(�); y(�)) and ( �w(�); �y(�))
both provide for pooling of type t with adjacent higher types.

The rationale for this result has been sketched in the introduction: If there
was no pooling with higher types, the usual tradeo¤ between the distribu-
tive e¤ects and the allocative e¤ects of a downward distortion in the contract
( �w(t); �y(t)) for a type t that has positive mass would be degenerate. Type t
would be deemed to have so much weight that a distortion in ( �w(t); �y(t)); away
from e¢ ciency, would seem undesirable. However, for a type t0 just above t
that does not have positive mass, standard arguments imply that the contract
( �w(t0); �y(t0)) is distorted downward from e¢ ciency. The resulting contract menu
though, with an e¢ cient outcome for t and a downward distortion for t0 > t
would be decreasing and would violate incentive compatibility. The assumption
that type t is not pooled with higher types thus leads to a contradiction.
By contrast, the monotonicity requirement does not preclude upward jumps

in the optimal contract menu. The observation that a mass point is incom-
mensurately more important than any continuity point of the type distribution
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implies that, as one moves from immediately adjacent lower types to the mass
point, the weights given to losses from distortions of e¢ ciency and to gains from
alleviating incentive constraints change discontinuously. As illustrated in Figure
1 in the introduction, this induces an upward jump in the contract menu.

Proposition 2.4 Assume that, for any w and y; the function t! ln
juy(w;y;t)j
uw(w;y;t)

is convex.13 Assume also that the density fa of the absolutely continuous com-
ponent Fa of the type distribution F is strictly positive and nondecreasing on
[t0; t1].
Let (w(�); y(�)) be any optimal contract menu, and let ( �w(�); �y(�)) and t̂ 2

[t0; t1] be the associated strongly equivalent contract menu and critical type as
given by Theorem 2.1. If F (ftg) > 0 for some t 2 [t0; t̂), consider the lowest
type that gets the same outcome as t, i.e.,

t
¯
:= infft0j( �w(t0); �y(t0)) = ( �w(t); �y(t))g:

If t
¯
> 0; the contract menu �w(�) and �y(�) is discontinuous at t

¯
. If t

¯
> 0 and

F ((t
¯
��;t

¯
��)) > 0 for all � > 0; the contract menu (w(�); y(�)) is also discon-

tinuous at t
¯
.

In Proposition 2.4, the additional assumptions, log-convexity of juy(w;y;t)j
uw(w;y;t)

in t and monotonicity of the density fa; are introduced to eliminate the pos-
sibility that the mass point might belong to the interior of an ironing interval
à la Guesnerie-La¤ont (1984). Such an interval would provide for a pooling of
types even when the type distribution has a continuous density. The additional
assumptions imply that the contracts o¤ered to higher types necessarily involve
strictly greater outcomes then the contracts o¤ered to lower unless the higher
types are pooled with mass points. Without mass points, these additional as-
sumptions imply that there is no pooling. This is formally stated as:

Proposition 2.5 Assume that, for any w and y; the function t! ln
juy(w;y;t)j
uw(w;y;t)

is convex. Assume also that the type distribution has a density, and that this
density is strictly positive and nondecreasing on [t0; t1].
If (w(�); y(�)) is any optimal contract menu, and if ( �w(�); �y(�)) is the asso-

ciated strongly equivalent contract menu and critical type as given by Theorem
2.1, then both menus (w(�); y(�)) and ( �w(�); �y(�)) are strictly increasing on [t0; t̂]
where t̂ is the critical type above which outcomes involve no distortion away from
e¢ ciency.

Whereas log-convexity of juy(w;y;t)juw(w;y;t)
in t and monotonicity of the density pro-

vide for monotonicity of optimal contract menus, continuity requires a di¤erent
set of assumptions. Adapting an argument of Mirrlees (1986, pp. 1231 f.), one
obtains
13This assumption is satis�ed, for example, by the quasi-linear speci�cation u(w; y; t) =

w � 1
t
g(y): For this speci�cation, ln juy(w;y;t)j

uw(w;y;t)
= ln g0(y)� ln t is strictly convex in t:
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Proposition 2.6 Assume that, for any v and t; the function y ! ut(c(v; y; t); y; t)
is convex, where c(v; y; t) is de�ned so that u(c(v; y; t); y; t) = v for any v; y; t:
If the type distribution has a continuous density, any optimal contract menu is
continuous.

Convexity of the function y ! ut(c(v; y; t); y; t) is implied by convexity of
the function (v; y) ! ut(c(v; y; t); y; t): As discussed in Hellwig (2004, 2007 b),
this latter condition is equivalent to the assumption that consumption-speci�c
risk aversion be weakly decreasing in t; i.e., that for any random pair ( ~w; ~y)
the amount of consumption that the agent is willing to sacri�ce in order to
eliminate the uncertainty in ( ~w; ~y) be nonincreasing in t: This assumption also
implies that, up to equivalence, the optimal contract menu is unique. Moreover,
the optimal deterministic contract menu remains optimal if randomization is
allowed; randomization is undesirable.

2.4 Three Preliminary Lemmas

The remainder of the paper provides formal proofs of the theorems and propo-
sitions. I begin by stating three lemmas that allow me to replace incentive com-
patibility and individual-rationality constraints by analytically tractable condi-
tions on the indirect utility function v(�) and by a monotonicity condition on
outcomes, along the lines of Mirrlees (1976). These lemmas are proved in the
online Appendix.
The �rst result shows that, even if the support of the type distribution is

a strict subset of the interval [t0; t1]; one can always formulate the principal�s
problem in terms of contract menus that are de�ned on the interval [t0; t1]: Refer
to a contract menu with domain X as incentive-compatible on X if condition IC
holds for all t and t0 in X; refer to it as individually rational on X if condition
IR holds for all t in X: Then one obtains:

Lemma 2.7 A contract menu (w(�); y(�)) that is de�ned on T � [t0; t1] is
incentive-compatible and individually rational on T if and only if there exists
an extension of (w(�); y(�)) to the interval [t0; t1] that is incentive-compatible
and individually rational on [t0; t1]:

This lemma implies that there is no loss of generality in assuming that all
contract menus are de�ned on the interval [t0; t1] and have to satisfy incen-
tive compatibility and individual-rationality conditions on this interval. For
t 2 [t0; t1]nT , contracts (w(t); y(t)) can always be chosen so that conditions IC
and IR hold. Incentive-compatibility and individual-rationality requirements
for such types do not add materially to the principal�s constraints. These types�
contracts are of course irrelevant for the principal�s payo¤ expectations.
For contract menus that are de�ned on [t0; t1]; the arguments of Mirrlees

(1976) are easily adapted to yield the following characterization of incentive
compatibility.
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Lemma 2.8 A nondecreasing contract menu (w(�); y(�)) is incentive-compatible
and individually rational on [t0; t1] if and only if the induced indirect utility
function v(�) satis�es the integral equation

v(t) = v(t0) +

Z t

t0

ut(w(�); y(�); �)d� (2.19)

for t 2 [t0; t1] and, moreover,
v(t0) � 0: (2.20)

In Lemma 2.8, weak monotonicity of the contract menu is assumed. Under
a strict single-crossing condition, weak monotonicity is in fact known to be
necessary for incentive compatibility. Here, with only a weak single-crossing
condition, this is not the case. However, with strictly convex indi¤erence curves
of the agent, the principal does not want to implement a non-monotonic contract
menu.14 This is the point of the following lemma.

Lemma 2.9 For any incentive-compatible contract menu (w(�); y(�)), there ex-
ists a nondecreasing incentive-compatible contract menu ( �w(�); �y(�)) that provides
the agent with the same payo¤ v(t) = u(w(t); y(t); t) for all t and that satis�esZ

[�y(t)� �w(t)]dF (t) �
Z
[y(t)� w(t)]dF (t); (2.21)

moreover, the inequality in (2.21) is strict unless the contract menus (w(�); y(�))
and ( �w(�); �y(�)) are equivalent.

3 A Reformulation of the Principal�s Problem

Lemmas 2.7 - 2.8 imply that the principal�s problem is equivalent to the problem
of choosing w(�); y(�); and v(�) so as to maximize (2.3) under the constraints that
y(�) be nondecreasing and that v(�) = u(w(�); y(�); �) satisfy the integral equation
(2.19) and the boundary condition (2.20). With a slight abuse of language, I
will refer to this problem also as the principal�s problem.
The integral equation (2.19) is equivalent to the requirement that v(�) be

absolutely continuous, with Radon-Nikodym derivative

v0(t) = ut(w(t); y(t); t) (3.1)

for almost all t: One is therefore tempted to treat the principal�s problem as a
problem of optimal control with state variable v and control variables w and y:
This would be the natural way to proceed if y(�) wasn�t required to be nonde-
creasing and if F had a density. Here, however, a direct application of control
theoretic methods is precluded by the monotonicity requirement on y(�) and the
lack of any structure on F . I will therefore reformulate the principal�s problem
so as to circumvent these di¢ culties.
14The logic is the same as in Figure 2 below.
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For this purpose, I change the variable of integration in (2.3), using a new
variable x; rather than t; as the argument of the functions that are to be chosen.
In a sense, this amounts to a rede�nition of the notion of "type". The new
"pseudotype" is constructed so that its distribution has a density. This density,
however, need not be continuous.
For any t 2 [t0; t1]; set

�(t) := t+ F (t): (3.2)

The function � is strictly increasing and has an inverse � = ��1: The inverse is
de�ned on the range of �; a subset of the interval [x0; x1] := [t0; t1+1]: Using the
fact that F (�) and therefore also �(�) is right-continuous, as well as increasing,
one can extend the inverse � to the entire interval [x0; x1] by setting

�(x) = sup
s
fsj�(s) � xg: (3.3)

If one sets ~x = �(~t); one has ~t = �(~x): The distribution of ~x is G := F � ��1;
and the distribution F of ~t satis�es F = G � ��1 = G � �: By the change-of-
variable formula, it follows that, for any function h on [t0; t1];Z t1

t0

h(t)dF (t) =

Z x1

x0

h(�(x))dG(x): (3.4)

The following lemma shows that G has a density so that (3.4) can actually be
written in the form Z t1

t0

h(t)dF (t) =

Z x1

x0

h(�(x))g(x)dx: (3.5)

Lemma 3.1 The function �(�) that is de�ned by (3.2) and (3.3) is absolutely
continuous. Its derivative � 0(�) satis�es

� 0(x) =
1

1 + f(�(x))
(3.6)

if, at t = �(x), the derivative F 0(t) = f(t) is well de�ned, and

� 0(x) = 0 (3.7)

otherwise. The distribution function G = F � ��1 is also absolutely continuous.
Its density g(x) = G0(x) satis�es

g(x) = 1� � 0(x) (3.8)

for all x:

Proof. From (3.2), (3.3), and the de�nition of G; one has

x = �(x) + F (�(x)) = �(x) +G(x) (3.9)
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for all x 2 [x0; x1]: Since �(�) and G(�) are both nondecreasing, it follows that
both are Lipschitz continuous, hence absolutely continuous. Moreover, their
slopes must add to one.
For any x; �(x+�) > �(x��) for all � > 0 implies

1 =
�(x+�)� �(x��)

2�
+
F (�(x+�))� F (�(x��))

2�
;

hence

lim
�!0

�(x+�)� �(x��)
2�

=
1

1 + lim�!0
F (�(x+�))�F (�(x��))

�(x+�)��(x��)

;

which yields (3.6) if

lim
�!0

F (�(x+�))� F (�(x��))
�(x+�)� �(x��) = f(�(x))

is well de�ned and (3.7) if

lim
�!0

F (�(x+�))� F (�(x��))
�(x+�)� �(x��) =1:

Trivially, (3.7) holds also if �(x+�) = �(x��) for some � > 0: For this case,
(3.3) indicates that � and F are discontinuous at t = �(x+�) = �(x��): The
derivative F 0(t) is then not well de�ned at t:

For any contract menu (w(�); y(�)); (3.3) and (3.5) imply that the principal�s
payo¤ (2.3) can be rewritten asZ x1

x0

[y(�(x))� w(�(x))]g(x)dx: (3.10)

Moreover, if û is de�ned so that

û(w; y; x) := u(w; y; �(x)) (3.11)

for all w; y; x; (2.4), (2.19), and (2.20) are equivalent to the conditions

v(�(x)) = û(w(�(x)); y(�(x)); x); (3.12)

v0(�(x))� 0(x) = ûx(w(�(x)); y(�(x)); x); (3.13)

and
v(�(t0)) � 0: (3.14)

Now (3.10) - (3.14) can be rewritten asZ x1

x0

[ŷ(x)� ŵ(x)]g(x)dx; (3.15)
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v̂(x) = û(ŵ(x); ŷ(x); x); (3.16)

v̂0(x) = ûx(ŵ(x); ŷ(x); x); (3.17)

and
v̂(t0) � 0; (3.18)

where
ŵ := w � � ; ŷ := y � � ; and v̂ := v � � : (3.19)

Consider the problem of maximizing (3.15) under the constraints that ŷ(�)
be nondecreasing and that v̂(�) satisfy (3.16) - (3.18). For lack of a better term,
I call this the principal�s modi�ed problem. The following proposition shows that
this problem is actually equivalent to the principal�s problem.

Proposition 3.2 A contract menu (w(�); y(�)); with associated indirect util-
ity function v(�); solves the principal�s problem, if and only if the functions
ŵ(�); ŷ(�); and v̂(�) that are given by (3.2), (3.3), and (3.19) solve the princi-
pal�s modi�ed problem.

Proof. The principal�s problem has been shown to be equivalent to the
problem of choosing w(�); y(�); and v(�) so as to maximize (3.10) under the con-
straints that y(�) be nondecreasing and that v(�) satisfy conditions (3.11) - (3.14).
This problem is equivalent to the problem of choosing functions ŵ(�); ŷ(�); and
v̂(�) to maximize (3.15) under the constraints that ŷ(�) be nondecreasing, that
v̂(�) satisfy (3.16) - (3.18), with û given by (3.11), and under the constraint
that ŵ(�); ŷ(�); and v̂(�) can be represented in the form (3.19) for some functions
w(�); y(�); and v(�): This latter problem is the same as the principal�s modi-
�ed problem with the added constraint ŵ(�); ŷ(�); and v̂(�) take the form (3.19)
for some functions w(�); y(�); and v(�): To prove the proposition, it is therefore
su¢ cient to show that the added constraint is redundant because, up to mod-
i�cations on null sets, any solution ŵ; ŷ; v̂ to the principal�s modi�ed problem
satis�es (3.19) for some functions w; y; v:
For this purpose, I will show that, for almost all x1 and x2; �(x1) = �(x2)

implies ŵ(x1) = ŵ(x2); ŷ(x1) = ŷ(x2); and v̂(x1) = v̂(x2): From (3.17) and
(3.11), one has

v̂0(x) = ut(ŵ(x); ŷ(x); �(x)) �
0(x):

Since �(x1) = �(x2) implies � 0(x) = 0 for almost all x 2 [x1; x2]; it follows that
�(x1) = �(x2) implies v̂(x1) = v̂(x2): By standard arguments,15 it follows that
there exists a function v such that v̂(x) = v(�(x)) for all x:
Next, consider the function w� such that

w�(t) = E[ŵ(~x)j�(~x) = t] (3.20)

for all t; where ~x is distributed as G: By the de�nition of the conditional expec-
tation, one has Z x1

x0

w�(�(x))dG(x) =

Z x1

x0

ŵ(x)dG(x): (3.21)

15See, e.g., Result (8), p. 43, in Hildenbrand (1974).
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Given w�; consider also the function y� such that

u(w�(t); y�(t); t) = v(t) (3.22)

for all t: By the de�nition of v; one also has

u(ŵ(x); ŷ(x); �(x)) = v(�(x)) (3.23)

for all x: By the strict quasi-concavity of u; (3.22), (3.20) and (3.23) imply

y�(t) � E[ŷ(~x)j�(~x) = t] (3.24)

for all t; hence Z x1

x0

y�(�(x))dG(x) �
Z x1

x0

ŷ(x)dG(x): (3.25)

Moreover, the inequality in (3.25) is strict unless one has w�(�(x)) = ŵ(x) for
G-almost all x:
If the inequality in (3.25) is strict, one hasZ x1

x0

[y�(�(x))� w�(�(x))]dG(x) >
Z x1

x0

[ŷ(x)� ŵ(x)]dG(x): (3.26)

Given that, trivially, the triple w� � � ; y� � � ; v̂ has y� � � nondecreasing and
v̂ = v � � satisfying (3.16) - (3.18), (3.26) is incompatible with the assumption
that ŵ; ŷ; v̂ maximizes (3.15) subject to the constraints that ŷ be nondecreasing
and that v̂ satisfy (3.16) - (3.18). Therefore, the inequality in (3.25) cannot
be strict. It follows that w�(�(x)) = ŵ(x) and, by (3.22), y�(�(x)) = ŷ(x) for
G-almost all x; as claimed in the lemma.

The argument is illustrated in Figure 2. If contracts are conditioned on
x rather than t; the principal has room to o¤er a richer contract menu. In
particular, if t is a mass point of the distribution F; the function �(�) is discon-
tinuous at t; and the principal can assign di¤erent contracts to di¤erent pseudo-
types x 2 (�(t�); �(t)]: Thus, he might o¤er di¤erent contracts (ŵ(x); ŷ(x)) for
x 2 (�(t�); �(t)]; so that ŵ(x) is uniformly distributed between w1 and w2 in
Figure 2. However, such an arrangement cannot be optimal for him. Because all
pseudotypes x 2 (�(t�); �(t)] correspond to the same real type �(x) = t; incen-
tive compatibility requires that all the contracts (ŵ(x); ŷ(x)) for x 2 (�(t�); �(t)]
provide the agent of type t with the same utility: Thus, in Figure 1, the con-
tract o¤ers (ŵ(x); ŷ(x)) for x 2 (�(t�); �(t)] all lie on the same indi¤erence
curve I(t) for type t. Strict quasi-concavity of u implies that the indi¤erence
curve I(t) is strictly convex. If the principal replaces the wage o¤ers ŵ(x) for
x 2 (�(t�); �(t)] by their (conditional) expectation w� = (w1 + w2)=2; he can
ask for an output y� that is strictly greater than the (conditional) expectation
of ŷ(x); x 2 (�(t�); �(t)]: By introducing heterogeneity into the contract o¤ers
to people with the same "real" type t; the principal can only harm himself.
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Figure 2: Multiple Contracts for Di¤erent Pseudotypes with the Same Type

4 Analysis of the Principal�s Modi�ed Problem

4.1 Preliminaries

The principal�s modi�ed problem has the same formal structure as the princi-
pal�s problem itself when F has a density. However, the density g(�) in (3.15)
is not, in general, continuous. Moreover, the functions û; ûw; and ûy are not
generally continuously di¤erentiable with respect to x: From (3.16), however,
one easily veri�es that û; like u; is twice continuously di¤erentiable and strictly
quasi-concave in w and y jointly, as well as increasing in w and decreasing in y:
In particular, one has

ûw(w; y; x) = uw(w; y; �(x)) (4.1)

and
ûy(w; y; x) = uy(w; y; �(x)) (4.2)

for any w; y; and x: However, from (4.1) and (4.2), one obtains

@

@x

jûy(w; y; x)j
ûw(w; y; x)

=
@

@t

juy(w; y; �(x))j
uw(w; y; �(x))

� 0(x); (4.3)

which has a discontinuity with respect to x whenever � 0 and the density g = 1�� 0
have a discontinuity. By (2.2) and Lemma 3.1, (4.3) yields

@

@x

jûy(w; y; x)j
ûw(w; y; x)

� 0 (4.4)

18



for all w; y, and x: Thus, û inherits the weak single-crossing property from u.

4.2 Optimality Conditions

If the function ŷ(�) was known to be absolutely continuous, the principal�s mod-
i�ed problem would be a standard control problem with v̂(�) and ŷ(�) as state
variables and with ŵ(�) and q(�) := ŷ0(�), as control variables, with the constraint
that q(x) � 0 for all x. The Hamiltonian function for this control problem would
take the form

Ĥ(v̂; ŷ; ŵ; q̂; �̂; '̂v; '̂q; x) = (ŷ � ŵ)g(x) + �̂ (û(ŵ; ŷ; x)� v̂) (4.5)

+'̂v ûx(ŵ; ŷ; x) + '̂q q:

However, this Hamiltonian is not, in general, continuous in x: In particular, if
�(x) is a mass point of the type distribution F and x0 < x implies �(x0) < �(x);
the density g(�) will exhibit a discontinuity at x, and so will the Hamiltonian
Ĥ: If such a discontinuity arises, there is no reason for ŷ(�) to be absolutely
continuous.
Even so, the principal�s modi�ed problem can be handled by control-theoretic

methods. In Hellwig (2008), I formulate a maximum principle for optimal con-
trol problems with monotonicity constraints on the controls. When applied to
the principal�s modi�ed problem, Theorem 3.1 in Hellwig (2008) yields:

Theorem 4.1 If the functions ŵ(�); ŷ(�); and v̂(�) solve the principal�s modi�ed
problem, then there exists a measurable function �̂ from [x0; x1] into R+; and
there exist absolutely continuous functions '̂v and '̂q from [x0; x1] into R such
that the following hold:

(a) For almost all x 2 [x0; x1];

'̂0v(x) = �Ĥv(v̂(x); ŷ(x); ŵ(x); q̂(x); �̂(x); '̂v(x); '̂q(x); x); (4.6)

(b) moreover,
'̂v(x0) � 0; '̂v(x0)v̂(x0) = 0; (4.7)

and
'̂v(x1) = 0: (4.8)

(c) For almost all x 2 [x0; x1];

'̂0q(x) = �Ĥy(v̂(x); ŷ(x); ŵ(x); q̂(x); �̂(x); '̂v(x); '̂q(x); x); (4.9)

(d) moreover,
'̂q(x0) � 0; '̂q(x0) � ŷ(x0) = 0; (4.10)

and
'̂q(x1) = 0: (4.11)
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(e) For almost every x 2 [x0; x1];

�g(x) + �̂(x)ûw(ŵ(x); ŷ(x); x) + '̂v(x)ûxw(ŵ(x); ŷ(x); x) = 0: (4.12)

(f) For almost every x 2 [x0; x1];

'̂q(x) � 0; (4.13)

moreover, '̂q(x) = 0 if ŷ(�) is strictly increasing at x:16

Proof. Reformulate the principal�s modi�ed problem by substituting for

ŵ(x) = c(v̂(x); ŷ(x); x)

for all x; where c(�; �; �) be de�ned so that for any y and t; c(�; y; t) is the inverse
of the section u(�; y; t) of u that is determined by y and t: The modi�ed problem
then satis�es the assumptions of Theorem 3.1 in Hellwig (2008). The associated
Hamiltonian is

H = (ŷ � c(v̂; ŷ; x)) g(x) + '̂v(x) ûx(c(v̂; ŷ; x); ŷ; x) + '̂q q: (4.14)

Theorem 3.1 in Hellwig (2008) implies the existence of '̂v; '̂q; andM such that,
for almost all x 2 [x0; x1]; one has

'̂0v(x) = �Hv; (4.15)

'̂0q(x) = �Hy; (4.16)

and, in addition, the transversality conditions (b) and (d), as well as statements
(e) and (f) hold. I also introduce

�̂(x) = (g(x)� '̂v(x)ûxw)
1

ûw
; (4.17)

de�ned so that (4.12) holds.
From (4.14) - (4.17), one obtains

'̂0v(x) =
@c

@v
(v̂(x); ŷ(x); x) � '̂v(x) ûxw

@c

@v
(v̂(x); ŷ(x); x)

= (g(x)� '̂v(x)ûxw)
1

ûw
= �̂(x)

and

'̂0q(x) = �(1� @c

@y
(v̂(x); ŷ(x); x)) g(x)� '̂v(x)ûxy

@c

@y
(v̂(x); ŷ(x); x)

= �(1 + ûy
ûw
) g(x) + '̂v(x)ûxy

ûy
ûw

:

= �g(x)� �̂(x)ûy(ŵ(x); ŷ(x); x)� '̂v(x)ûxy(ŵ(x); ŷ(x); x) (4.18)
16A real-valued, nondecreasing function f is said to be strictly increasing at t if f(t+ ")�

f(t� ") > 0 for all " > 0:
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for almost all x 2 [x0; x1]: Statements (a) and (c) follow immediately.

In the following, I will suppose that ŵ(�); ŷ(�); and v̂(�) provide a solution to
the principal�s modi�ed problem, and that �̂(�); '̂v(�); and '̂q(�) are the associ-
ated Lagrange multiplier and costate variables.
Given the Inada condition uy(w; 0; t) = 0 for all w and t; one does not have

to worry about boundary solutions.

Lemma 4.2 Any solution to the principal�s modi�ed problem satis�es ŵ(x) >
0 and ŷ(x) > 0 for all x 2 (x0; x1].

Proof. I �rst show that ŷ(x) > 0 for all x 2 (x0; x1]: For suppose that this
claim is false. Then, because ŷ(�) is nondecreasing, there exists �x 2 (x0; x1] such
that ŷ(x) = 0 for x 2 [x0; �x) and ŷ(x) > 0 for x > �x: Because ŷ(�) is strictly
increasing at �x, statement (f) of Theorem 4.1 yields

'̂q(�x) = 0: (4.19)

Because uy(w; 0; t) = 0 for all w and t; ŷ(x) = 0 for x 2 [x0; �x) also implies

ûy(ŵ(x); ŷ(x); x) = uy(ŵ(x); 0; �(x)) = 0

and
ûxy(ŵ(x); ŷ(x); x) = uyt(ŵ(x); 0; �(x))�

0(x) = 0

for all x 2 [x0; �x): By (4.18), therefore,

 0(x) = �g(x)

for all x 2 (x0; �x): By integration, using (4.19), one obtains

'̂q(0) = '̂q(�x)�
Z �x

0

'̂0q(x
0)dx0 = G(�x): (4.20)

Because �x > x0; by the de�nitions of G and x0; one has G(�x) = F (�(�x)) > 0:
Therefore, (4.20) is incompatible with (4.13).The assumption that ŷ(x) = 0 for
some x 2 (x0; x1] thus leads to a contradiction and must be false.
Given that ŷ(x) > 0 for x 2 (x0; x1]; the individual-rationality condition

û(ŵ(x); ŷ(x); x) � 0 also yields ŵ(x) > 0 for x 2 (x0; x1]:

Using (4.6), one can rewrite (4.12) and (4.18) as

'̂0v(x)ûw + '̂v(x)ûxw = g(x) (4.21)

and
'̂0q(x) = �g(x)� '̂0v(x)ûy � '̂v(x)ûxy; (4.22)

where ûw; ûy; ûwx; and ûyx are all evaluated at (ŵ(x); ŷ(x); x): If one uses (4.21)
to substitute for '̂0v(x) in (4.22), one obtains:

'̂0q(x) = �
�
1 +

ûy
ûw

�
g(x)� '̂v(x)

�
ûyx �

ûy
ûw

ûwx

�
; (4.23)
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or, equivalently,

'̂0q(x) = �
ûw + ûy
ûw

g(x) + '̂v(x)ûw
@

@x

jûyj
ûw

: (4.24)

4.3 Analysis of the Optimality Conditions

Equation (4.24) is the key to assessing the e¢ ciency properties of the contracts
(ŵ(x); ŷ(x)); x 2 (x0; x1]: A contract (ŵ(x); ŷ(x)) 2 R2++ is e¢ cient for x if

ûw(ŵ(x); ŷ(x); x) + ûy(ŵ(x); ŷ(x); x) = 0; (4.25)

distorted downwards from e¢ ciency for x if

ûw(ŵ(x); ŷ(x); x) + ûy(ŵ(x); ŷ(x); x) > 0; (4.26)

and distorted upwards from e¢ ciency for x if

ûw(ŵ(x); ŷ(x); x) + ûy(ŵ(x); ŷ(x); x) < 0: (4.27)

By (4.24), therefore, (ŵ(x); ŷ(x)) is e¢ cient for x if

'̂0q(x)� '̂v(x)ûw
@

@x

jûyj
ûw

= 0; (4.28)

distorted downwards from e¢ ciency for x if

'̂0q(x)� '̂v(x)ûw
@

@x

jûyj
ûw

< 0; (4.29)

and distorted upwards from e¢ ciency for x if

'̂0q(x)� '̂v(x)ûw
@

@x

jûyj
ûw

> 0: (4.30)

The function '̂v(�) is given as the solution to the di¤erential equation (4.21)
that satis�es the transversality condition '̂v(x1) = 0: This solution is computed
as

'̂v(x) = �
Z x1

x

g(x0)

ûw(ŵ(x0); ŷ(x0); x0)
exp

 Z x0

x

ûxw(ŵ(x
00); ŷ(x00); x00)

ûw(ŵ(x00); ŷ(x00); x00)
dx00

!
dx0;

(4.31)
so that one obtains:

Lemma 4.3 The costate variable '̂v(�) satis�es '̂v(x) < 0 for all x 2 [x0; x1):

At this point, a standard argument, along the lines of Mirrlees (1971, 1976)
or Seade (1982), might go as follows: If there is no pooling of types, so that
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'̂0q(x) = 0; and if the single-crossing condition (4.4) is strict, i.e., if @
@x

jûyj
ûw

<
0; then, for x 2 [x0; x1); Lemma 4.3 implies (4.29). Therefore, the contract
(ŵ(x); ŷ(x)) is distorted downwards from e¢ ciency if x 2 [x0; x1):
However, the presumptions that '̂0q(x) = 0 and that the single-crossing con-

dition (4.4) is strict are both not justi�ed. Even if the original single-crossing
condition (2.2) is strict, the inequality in (4.4) cannot be strict if �(x) is a
mass point of the distribution F (�): Moreover, if �(x) is a mass point of the
distribution F (�); it turns out that one must have '̂0q(x) < 0:
Given the insu¢ ciency of the traditional argument focussing on the sign

of the costate variable '̂v(�); the following argument focusses on the costate
variable '̂q(�) that corresponds to the monotonicity constraint. From (4.24),
one �nds that

'̂q(x̂)� '̂q(x) =
Z x̂

x

�
'̂v(x)ûw

@

@x

jûyj
ûw

� ûw + ûy
ûw

g(x0)

�
dx0 (4.32)

for any x and x̂: The following lemma relates the behaviour of '̂q(�) to the
e¢ ciency properties of the contracts (ŵ(x); ŷ(x)):

Lemma 4.4 For any x 2 [x0; x1]; '̂q(x) 6= 0 implies

(ŵ(x); ŷ(x))� (w�(�(x)); y�(�(x)));

i.e., if the monotonicity constraint is binding, there must be a downward distor-
tion from e¢ ciency.

Proof. I �rst show that '̂q(x0) = 0: If ŷ(x0) > 0; this follows from the
transversality condition (4.10). If ŷ(x0) = 0; Lemma 4.2 implies that the func-
tion ŷ(�) is strictly increasing at x0; in this case, '̂q(x0) = 0 follows from state-
ment (f) in Theorem 4.1.
Suppose that '̂q(x̂) 6= 0 for some x̂ so that (ŵ(x̂); ŷ(x̂)) is not distorted

downwards from e¢ ciency. Since '̂q(x0) = 0 and '̂q(�) is continuous, there
exists �x 2 [x0; x̂) such that '̂q(�x) = 0 and '̂q(x) 6= 0 for all x 2 (�x; x̂]: By
statement (f) in Theorem 4.1, one actually has '̂q(x) < 0 and ŷ(x) = ŷ(x̂) for
all x 2 (�x; x̂]: By (3.17), one also has ŵ(x) = ŵ(x̂) for all x 2 (�x; x̂]; i.e., all
types t with �(t) 2 (�x; x̂] must get the same contract.
By the single-crossing condition (4.4), it follows that, for any x0 2 (�x; x̂]; the

contract (ŵ(x0); ŷ(x0)) = (ŵ(x̂); ŷ(x̂)) is not distorted downwards from e¢ ciency
for x. By (4.25) - (4.27), it follows that

ûw(ŵ(x
0); ŷ(x0); x0) + ûy(ŵ(x

0); ŷ(x0); x0) � 0

for all x0 2 (�x; x̂]: From (4.32), one therefore obtains

'̂q(x̂)� '̂q(�x) � �
Z x̂

x

�'̂v(x)ûw
@

@x

jûyj
ûw

dx0: (4.33)

By (4.4) and Lemma 4.3, (4.33) in turn yields '̂q(x̂) � '̂q(�x) � 0; which is in-
compatible with the assumption that '̂q(x̂) < 0 and '̂q(�x) = 0: The assumption
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that '̂q(x̂) 6= 0 for some x̂ so that (ŵ(x̂); ŷ(x̂)) is not distorted downwards from
e¢ ciency has thus led to a contradiction and must be false.

Lemma 4.4 implies that, for any x for which (ŵ(x); ŷ(x)) is not downward
distorted, the term '̂q(x) in (4.32) vanishes. Because, by (4.13), '̂q(x̂) � 0,
it follows that, for any such x and any x̂ > x; the left-hand side of (4.32) is
nonpositive, and one must haveZ x̂

x

'̂v(x
0)ûw

@

@x

jûyj
ûw

dx0 �
Z x̂

x

ûw + ûy
ûw

g(x0)dx0: (4.34)

Since ûw > 0 and ûy � 0; this is equivalent to the requirement thatZ x̂

x

'̂v(x
0)ûw

@

@x

jûyj
ûw

dx0 �
Z x̂

x

�
1� jûyj

ûw

�
g(x0)dx0: (4.35)

By Lemma 4.3 and the single-crossing condition (4.4), the integrand on the
left-hand side is everywhere nonnegative. What about the integrand on the
right-hand side? If (ŵ(x); ŷ(x)) is not downward distorted, then, at x; the
integrand on the right-hand side is zero or negative. For x0 > x; the integrand
on the right-hand side of (4.35) may change, �rst, because jûyj

ûw
depends on x0

directly, and, second, because the contract (ŵ(x0); ŷ(x0)) depends on x0: The
following lemma exploits the monotonicity of ŷ(�) and the quasi-concavity of u
and û to provide a bound on the change that depends only on the direct e¤ect
of x0 on the marginal rate of substitution.

Lemma 4.5 For any x 2 [x0; x1) and any x0 2 (x; x1];

jûy(ŵ(x0); ŷ(x0); x0)j
ûw(ŵ(x0); ŷ(x0); x0)

� jûy(ŵ(x); ŷ(x); x)j
ûw(ŵ(x); ŷ(x); x)

+

Z x0

x

@

@x

jûyj
ûw

dx00: (4.36)

Moreover, the inequality is strict if ŷ(x0) > ŷ(x):

Proof. Incentive compatibility implies that the functions ŷ(�) and ŵ(�)
are co-monotonic. Indeed, by (3.16) and the incentive compatibility condition
(3.17), one must have dŵ(x00) + ûy

ûw
dŷ(x00) = 0 for almost all x00 2 [x0; x1]. By

standard calculus, one therefore has

jûy(ŵ(x0); ŷ(x0); x0)j
ûw(ŵ(x0); ŷ(x0); x0)

� jûy(ŵ(x); ŷ(x); x)j
ûw(ŵ(x); ŷ(x); x)

�
Z x0

x

@

@x

jûyj
ûw

dx00

=

Z x0

x

�
@

@w

jûyj
ûw

�
� ûy
ûw

�
+

@

@y

jûyj
ûw

�
dŷ(x00) (4.37)

for all x 2 [x0; x1) and all x0 2 (x; x1]: The right-hand side of (4.37) is computed
as Z x0

x

�
� 1

û3w

��
û2yûww � ûyûw(ûwy + ûyw) + û2wûyy

�
dŷ(x00): (4.38)
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Because u and û are quasi-concave in w and y and because ŷ(�) is nondecreasing,
expression (4.38) is nonnegative. Moreover, if ŷ(x0) > ŷ(x); then, because the
quasi-concavity of u and û in w and y is strict, expression (4.38) is strictly
positive. The left-hand side of (4.37) is therefore nonnegative. It is positive if
ŷ(x0) > ŷ(x):

Upon combining (4.35) and (4.36), one �nds that, for any x for which
(ŵ(x); ŷ(x)) is not downward distorted, one must haveZ x̂

x

'̂v(x
0)ûw

@

@x

jûyj
ûw

dx0 �
�
1� jûy(ŵ(x); ŷ(x); x)j

ûw(ŵ(x); ŷ(x); x)

�Z x̂

x

g(x0)dx0

�
Z x̂

x

Z x0

x

@

@x

jûyj
ûw

dx00 g(x0)dx0 (4.39)

for all x̂ > x: Upon combining (4.39) with (4.4) and Lemma 4.3, one obtains

Lemma 4.6 None of the contracts (ŵ(x); ŷ(x)) for x 2 [x0; x1) is distorted
upwards from e¢ ciency, i.e., all of these contracts satisfy

ûw(ŵ(x); ŷ(x); x) + ûy(ŵ(x); ŷ(x); x) � 0:

Proof. If the lemma is false, then, by (4.27), one has

jûy(ŵ(x); ŷ(x); x)j
ûw(ŵ(x); ŷ(x); x)

> 1 (4.40)

for some x 2 [x0; x1): Moreover, Lemmas 4.4 and 4.5 imply that (4.39) must
hold for all x̂ 2 (x; x1]: However, (4.40) implies that, for x̂ su¢ ciently close to x;
the right-hand side of (4.39) is negative. By (4.4) and Lemma 4.3, the left-hand
side of (4.39) is nonnegative. The assumption that the lemma is false thus leads
to a contradiction.

By contrast, the possibility that (ŵ(x); ŷ(x)) might be e¢ cient for x cannot
be entirely ruled out. The following lemma and its corollary show that, if this
is the case, then for any x0 2 [x; x1]; the contract (ŵ(x0); ŷ(x0)) must also be
e¢ cient for x0: Moreover, one must have pooling of all types between �(x) and
t1, the top of the type set.

Lemma 4.7 If, for some x 2 [x0; x1); the contract (ŵ(x); ŷ(x)) is e¢ cient for
x, then, for every x̂ 2 [x; x1]; the contract (ŵ(x̂); ŷ(x̂)) is e¢ cient for x̂:

Proof. I will prove that

jûy(ŵ(x); ŷ(x); x)j
ûw(ŵ(x); ŷ(x); x)

= 1 (4.41)

implies
jûy(ŵ(x̂); ŷ(x̂); x̂)j
ûw(ŵ(x̂); ŷ(x̂); x̂)

= 1 (4.42)
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for all x̂ 2 [x; x1]: If the claim is false, there exist x 2 [x0; x1) and x̂ 2 [x; x1]
such that (ŵ(x); ŷ(x)) is e¢ cient and (ŵ(x̂); ŷ(x̂)) is distorted downwards from
e¢ ciency. Let �x � x be the in�mum of the set of x̂ 2 [x; x1) for which (4.42)
fails to hold. I �rst show that

ûw(ŵ(�x); ŷ(�x); �x) + ûy(ŵ(�x); ŷ(�x); �x) = 0: (4.43)

If �x = x; the claim is trivial. If �x > x; the de�nition of �x implies that (4.42)
holds for all x0 2 [x; �x): By Lemma 4.5, it follows that

jûy(ŵ(�x); ŷ(�x); �x)j
ûw(ŵ(�x); ŷ(�x); �x)

� 1 +
Z �x

x0

@

@x

jûyj
ûw

dx00

for all x0 2 [x; �x): Upon taking limits as x0 converges to �x from below; one
obtains jûy(ŵ(�x); ŷ(�x); �xj � ûw(ŵ(�x); ŷ(�x); �x): By Lemma 4.6, one also has
jûy(ŵ(�x); ŷ(�x); �xj � ûw(ŵ(�x); ŷ(�x); �x): (4.43) follows immediately.
Because the contract (ŵ(�x); ŷ(�x)) satis�es (4.43), Lemmas 4.4 and 4.5 imply

that (4.39) must hold for x = �x and any x̂ 2 (�x; x1]; moreover, by (4.43), the
�rst term on the right-hand side of (4.39) is zero. Thus, one must haveZ x̂

�x

'̂v(x
0)ûw

@

@x

jûyj
ûw

dx0 � �
Z x̂

�x

Z x0

�x

@

@x

jûyj
ûw

dx00 g(x0)dx0 (4.44)

for all x̂ 2 (x; x1]: By (4.4) and (3.8), the right-hand side of (4.44) is no greater
than �

R x̂
�x

R x̂
�x

@
@x

jûyj
ûw

dx00 dx0: Therefore, (4.44) implies thatZ x̂

�x

'̂v(x
0)ûw

@

@x

jûyj
ûw

dx0 � �(x̂� �x)
Z x̂

�x

@

@x

jûyj
ûw

dx00;

or, equivalently, thatZ x̂

�x

['̂v(x
0)ûw + x̂� x]

@

@x

jûyj
ûw

dx0 � 0 (4.45)

for all x̂ 2 (�x; x1]: By Lemma 4.3, there exists A > 0 such that '̂v(x
0)ûw � �A

if x0 is su¢ ciently close to �x: If x̂� �x < A; the integrand in (4.45) is everywhere
nonnegative; moreover, it is strictly positive if @

@x
jûyj
ûw

< 0. For (4.45) to hold,

one must therefore have @
@x

jûyj
ûw

= 0 for all x0 2 [�x; x̂]: By Lemma 4.5, it follows
that

jûy(ŵ(x0); ŷ(x0); x0)j
ûw(ŵ(x0); ŷ(x0); x0)

� jûy(ŵ(�x); ŷ(�x); �x)j
ûw(ŵ(�x); ŷ(�x); �x)

(4.46)

for all x0 2 [�x; x̂]: By (4.43), this implies jûy(ŵ(x0); ŷ(x0); x0)j � ûw(ŵ(x
0); ŷ(x0); x0):

By Lemma 4.6, one also has jûy(ŵ(x0); ŷ(x0); x0)j � ûw(ŵ(x
0); ŷ(x0); x0): There-

fore, (4.42) holds for all x0 2 [�x; x̂]; contrary to the assumption that (ŵ(x̂); ŷ(x̂))
is distorted downwards from e¢ ciency: The assumption that one can have
x 2 [x0; x1) and x̂ 2 [x; x1] such that (ŵ(x); ŷ(x)) is e¢ cient and (ŵ(x̂); ŷ(x̂)) is
distorted downwards from e¢ ciency has thus led to a contradiction.
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Lemma 4.8 If, for some x 2 [x0; x1); the contract (ŵ(x); ŷ(x)) is e¢ cient for
x, then, for every x̂ 2 [x; x1];

(ŵ(x̂); ŷ(x̂)) = (ŵ(x); ŷ(x)) (4.47)

@

@x0
jûy(ŵ(x); ŷ(x); x0)j
ûw(ŵ(x); ŷ(x); x0)

(x̂) = 0: (4.48)

Proof. If, for some x 2 [x0; x1); the contract (ŵ(x); ŷ(x)) is e¢ cient for
x, then, by Lemmas 4.7 and 4.4, one must have '̂q(x̂) = 0 for all x̂ 2 [x; x1]:
Hence, also, '̂0q(x̂) = 0 for all x̂ 2 [x; x1]: By the optimality condition (4.24), it
follows that

'̂v(x̂)ûw
@

@x

jûyj
ûw

= 0

for all x̂ 2 [x; x1]: By Lemma 4.3, therefore,

@

@x0
jûy(ŵ(x̂); ŷ(x̂); x0)j
ûw(ŵ(x̂); ŷ(x̂); x0)

(x̂) = 0 (4.49)

for all x̂ 2 [x; x1): By Lemma 4.5, it follows that

jûy(ŵ(x̂); ŷ(x̂); x̂)j
ûw(ŵ(x̂); ŷ(x̂); x̂)

� jûy(ŵ(x); ŷ(x); x)j
ûw(ŵ(x); ŷ(x); x)

(4.50)

for all x̂ 2 [x; x1]; and the inequality is strict if ŷ(x̂) > ŷ(x): Because Lemma
4.7 implies that the two sides of (4.50) are both equal to one, it follows that
ŷ(x̂) � ŷ(x): Hence ŷ(x̂) = ŷ(x), and, by incentive compatibility, ŵ(x̂) = ŵ(x):
This establishes (4.47). (4.48) follows from (4.49) and (4.47).

As a last step on the way towards proving Theorem 2.1, I show that, even if
there is no x 2 [x0; x1) for which the contract (ŵ(x); ŷ(x)) is e¢ cient, yet there
is no distortion at the top.

Lemma 4.9 For any sequence fxkg that converges to x1 from below, one has

lim
k!1

�
ûw(ŵ(x

k); ŷ(xk); xk) + ûy(ŵ(x
k); ŷ(xk); xk)

�
= 0: (4.51)

Proof. Let fxkg be any sequence that converges to x1 from below. Without
loss of generality, one may assume that the sequence is nondecreasing. The
contract sequence f(ŵ(xk); ŷ(xk))g is then also nondecreasing. Because this
sequence is bounded by (ŵ(x1); ŷ(x1)); it must have a limit ( �w; �y):
Recall that, from the transversality condition (4.11) and the optimality con-

dition (4.13), one has '̂q(x1) = 0 and '̂q(x) � 0: For any k; therefore, condition
(4.32) yields

1

1�G(xk)

Z x1

xk
'̂v(x)ûw

@

@x

jûyj
ûw

dx � 1

1�G(xk)

Z x1

xk

ûw + ûy
ûw

g(x)dx: (4.52)
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I claim that, as k ! 1; the left-hand side of this inequality converges to
zero. To establish this claim, I �rst observe that, by (4.31) and (4.4), the left-
hand side of (4.52) is nonnegative. Also, by (4.31) and (4.4), the left-hand side
of (4.52) can be written in the form

1

1�G(xk)

Z x1

xk

Z x1

x

h(x; x0)g(x0)dx0 ûw

���� @@x jûyjûw

���� dx; (4.53)

where, for any x and x0;

h(x; x0) :=
1

ûw(ŵ(x0); ŷ(x0); x0)
exp

 Z x0

x

ûxw(ŵ(x
00); ŷ(x00); x00)

ûw(ŵ(x00); ŷ(x00); x00)
dx00

!
: (4.54)

For x 2 [xk; x1]; one has 1 � G(xk) � 1 � G(x): Expression (4.53) is therefore
bounded above by Z x1

xk

R x1
x
h(x; x0)dG(x0)

1�G(x) ûw

���� @@x jûyjûw

���� dx; (4.55)

which converges to zero as k ! 1 and xk converges to x1 from below. Given
that the left-hand side of (4.52) is bounded between zero and (4.53), it must
also converge to zero as k !1:
By Lemma 4.6, the right-hand side of (4.52) is nonnegative for all k: Because

the left-hand side of (4.52) converges to zero, it follows that the right-hand side
also converges to zero as k !1 and xk converges to x1 from below. Therefore,
one must have

ûw( �w; �y; x1) + ûy( �w; �y; x1)

ûw( �w; �y; x1)
= 0: (4.56)

The lemma follows immediately.

4.4 Proofs of Theorems 2.1 and 2.3

Proof of Theorem 2.1. Given the optimal contract menu (w(�); y(�)); let
( �w(�); �y(�)) be the associated strongly equivalent contract menu that is given by
Lemmas 2.9 and 2.8, and let v(�) be the associated indirect utility function. Fur-
ther, let ŵ(�); ŷ(�); and v̂(�) be given by (3.2), (3.3), and (3.19). By Proposition
3.2, these functions solve the principal�s modi�ed problem.
If, for all x 2 (x0; x1]; the contract (ŵ(x); ŷ(x)) is e¢ cient for x, set t̂ = t0:

Statement (a.1) of the theorem is then trivially true, and statements (a.2) and
(b) are moot.
Suppose therefore that the set of x 2 [x0; x1] for which the contract (ŵ(x); ŷ(x))

is distorted downward from e¢ ciency is nonempty, let x̂ > x0 be the supremum
of this set, and let t̂ = �(x̂). Lemma 4.7 implies that, for x 2 [x0; x̂); the contract
(ŵ(x); ŷ(x)) is distorted downward from e¢ ciency. By (3.19), it follows that, for
t 2 [t0; t̂); the contract ( �w(�); �y(�)) is distorted downward from e¢ ciency. This
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con�rms statement (b) of the theorem. Statement (a.1) of the theorem follows
from Lemma 4.8, statement (a.2) from Lemma 4.9.

Proof of Theorem 2.3. Let ( �w(�); �y(�)), t̂, and t 2 [t0; t̂) be as speci�ed
in the theorem, and let ŵ(�); ŷ(�) be given by (3.2), (3.3), and (3.19). Let
x = �(t) and x

¯
= supt0<t �(t

0): Then �(x
¯
) = �(x) = t. For any x0 2 [x

¯
; x]; one

has (ŵ(x0); ŷ(x0)) = ( �w(t); �y(t)); and, since t < t̂; the contract (ŵ(x0); ŷ(x0))
is distorted downward from e¢ ciency for x0: For any x0 2 [x

¯
; x]; one also has

� 0(x0) = 0: By (4.3) and (3.8), it follows that

@

@x

jûy(ŵ(x0); ŷ(x0); x0)j
ûw(ŵ(x0); ŷ(x0); x0)

= 0

and for all x0 2 [x
¯
; x]: By (4.24) and the fact that (ŵ(x0); ŷ(x0)) = ( �w(t); �y(t)) is

distorted downward from e¢ ciency, it follows that '̂0q(x
0) < 0. Because '̂q(x¯

) �
0 and '̂0q(x

0) < 0 for all x0 2 (x
¯
; x); it follows that '̂q(x) < 0 and, hence, that

'̂q(x
00) < 0 for any x00 > x that is su¢ ciently close to x: Therefore, there exists

�x > x such that (ŵ(x0); ŷ(x0)) = (ŵ(x); ŷ(x)) = ( �w(t); �y(t)) for all x0 2 (x
¯
; �x): Set

�t = �(�x): Because �x > x; one must have �t > t: Since (ŵ(x0); ŷ(x0)) = ( �w(t); �y(t))
is distorted downward from e¢ ciency for all x0 2 (x

¯
; �x); one must also have

�t � t̂:

4.5 Proofs of Propositions 2.4, 2.5, 2.6

Proof of Proposition 2.4. Let t and t
¯
be as speci�ed in the proposition.

By Theorem 2.3, there exists �t 2 (t; t̂) such that the functions �w(�); �y(�) are
constant on (t; �t): If t

¯
= t0; there is nothing to prove. Suppose therefore that

t
¯
> t0 and that the contract menu ( �w(�); �y(�)) is continuous at t¯: Let (ŵ(�); ŷ(�))be the associated solution to the principal�s modi�ed problem, and let x

¯
:= �(t

¯
)

and �x := �(�t): The constancy of ( �w(�); �y(�)) on (t
¯
; �t) implies that (ŵ(�); ŷ(�)) is

constant on (x
¯
; �x): The continuity of ( �w(�); �y(�)) at t

¯
implies that (ŵ(�); ŷ(�)) is

continuous at x
¯
: If (ŵ; ŷ) is the common value of (ŵ(�); ŷ(�)) on (x

¯
; �x); then, by

the de�nitions of x
¯
and t

¯
; one has (ŵ(x); ŷ(x))� (ŵ; ŷ) for x <x

¯
:

By statement (f) in Theorem 4.1, it follows that '̂q(x¯
) = 0: One must also

have '̂q(x
k) = 0 for all k along some sequence fxkg that converges to x

¯
from

below. For suppose that '̂q(x) < 0 for all x below x¯
and su¢ ciently close to x

¯
.

Then (ŵ(�); ŷ(�)) must be constant on an interval which has x
¯
as its supremum.

Given that (ŵ(x); ŷ(x))� (ŵ; ŷ) for x < x̂; this would contradict the continuity
of (ŵ(�); ŷ(�)) at x̂:
Given that '̂q(x

k) = 0 for all k along some sequence fxkg that converges
to x
¯
from below, one must also have '̂0q(�

k) � 0 for all k along some sequence
f�kg that converges to x

¯
from below. By (4.24) and the de�nition (3.11) of the

function û; one then has

�
 
1 +

uky
ukw

!
g(�k) + '̂v(�

k)ukw
@

@t

��uky��
ukw

� � 0(�k) � 0 (4.57)
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for all k; where uky ; u
k
w; etc. are all evaluated at (ŵ(�

k); ŷ(�k); �(�k)): Without
loss of generality, one may suppose that, for any k; at �(�k); the distribution
function F has a derivative. The value of this derivative is fa(�(�k)): By Lemma
3.1, one then has

� 0(�k) =
1

1 + fa(�(�k))
and g(�k) =

fa(�(�
k))

1 + fa(�(�k))

for all k: Thus, (4.57) implies that

'̂v(�
k)ukw

fa(�(�k))

@

@t

��uky��
ukw

�
 
1 +

uky
ukw

!
(4.58)

for all k. Upon taking limits as k goes out of bounds, using the presumed
continuity of (ŵ(�); ŷ(�)) at x

¯
; one infers that

'̂v(x¯
)uw(ŵ; ŷ; �(x¯

))
�fa

@

@t

juyj
uw

(ŵ; ŷ; �(x
¯
)) �

�
1 +

uy(ŵ; ŷ; �(x¯
))

uw(ŵ; ŷ; �(x¯
))

�
; (4.59)

where �fa := limk!1 fa(�(�
k)); this limit exists because fa(�) is a nondecreasing

function.
Without loss of generality, one may also suppose that �x is the supremum of

the set on which (ŵ(�); ŷ(�)) takes the value (ŵ; ŷ): Thus, (ŵ(�); ŷ(�)) is strictly
increasing at �x: Therefore, '̂q(�x) = 0: By statement (f) in Theorem 4.1, it
follows that '̂q is maximal at �x: Therefore, there exists (a nonnull set of) � <
�x; close to �x such that '̂0q(�) � 0: Because t < t̂; Theorem 2.1 implies that
uw(ŵ; ŷ; �(x¯

)) + uy(ŵ; ŷ; �(x¯
)) > 0: By the single-crossing condition, it follows

that uw(ŵ; ŷ; �(�)) + uy(ŵ; ŷ; �(�)) > 0 for � close to �x: By (4.24), therefore,
'̂0q(�) � 0 implies � 0(�) > 0 so that, at �(�), the type distribution F again has
a density, with the value fa(�(�)): Upon using (4.24), (3.11); and Lemma 3.1,
as before, one infers that

'̂v(�)uw(ŵ; ŷ; �(�))

fa(�(�))

@

@t

juyj
uw

(ŵ; ŷ; �(�)) �
�
1 +

uy(ŵ; ŷ; �(�))

uw(ŵ; ŷ; �(�))

�
: (4.60)

By (4.21) and the fact that (ŵ(x); ŷ(x)) = (ŵ; ŷ) for all x 2 (x
¯
; �), one also

has '̂v(�)uw(ŵ; ŷ; �(�)) > '̂v(x¯
)uw(ŵ; ŷ; �(x¯

)): Since �(�) > �(�k) for all k and
fa is a nondecreasing function, one also has fa(�(�)) � fa(�(�

k)) for all k and,
therefore, fa(�(�)) � �fa: Because, by Lemma 4.3, '̂v(�) < 0 and '̂v(x¯

) < 0; it
follows that

'̂v(�)uw(ŵ; ŷ; �(�))

fa(�(�))
>
'̂v(x¯

)uw(ŵ; ŷ; �(x¯
))

�fa
: (4.61)

By the log-convexity of juy(w;y;t)juw(w;y;t)
in t; one also has

uw(ŵ; ŷ; �(�))

juy(ŵ; ŷ; �(�))j
@

@t

juyj
uw

(ŵ; ŷ; �(�)) � uw(ŵ; ŷ; �(x¯
))

juy(ŵ; ŷ; �(x¯ ))j
@

@t

juyj
uw

(ŵ; ŷ; �(x
¯
)): (4.62)
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Upon combining (4.59) - (4.62), using the fact that, by Lemma 4.3 and the
single-crossing condition, '̂v and

@
@t
juyj
uw

are negative, one obtains

uw(ŵ; ŷ; �(�))

juy(ŵ; ŷ; �(�))j

�
1 +

uy(ŵ; ŷ; �(�))

uw(ŵ; ŷ; �(�))

�
� '̂v(�)uw(ŵ; ŷ; �(�))

fa(�(�))

uw(ŵ; ŷ; �(�))

juy(ŵ; ŷ; �(�))j
@

@t

juyj
uw

(ŵ; ŷ; �(�)

<
'̂v(x¯

)uw(ŵ; ŷ; �(x¯
))

�fa

uw(ŵ; ŷ; �(x¯
))

juy(ŵ; ŷ; �(x¯ ))j
@

@t

juyj
uw

(ŵ; ŷ; �(x
¯
))

� uw(ŵ; ŷ; �(x¯
))

juy(ŵ; ŷ; �(x¯ ))j

�
1 +

uy(ŵ; ŷ; �(x¯
))

uw(ŵ; ŷ; �(x¯
))

�
:

Thus,
uw(ŵ; ŷ; �(�))

juy(ŵ; ŷ; �(�))j
� 1 < uw(ŵ; ŷ; �(x¯

))

juy(ŵ; ŷ; �(x¯ ))j
� 1; (4.63)

which is incompatible with the single-crossing condition. The assumption that
t̂ > t0 and that the contract menu (w(�); y(�)) is continuous at t̂ has thus led to
a contradiction and must be false. This completes the proof of Proposition 2.4.

Proof of Proposition 2.5 (Sketch). The argument is similar to the
one in the proof of Proposition 2.4: If there were a pooling interval [t

¯
; �t]; the

costate variable '̂q(�) would have to be nonincreasing just above x¯= �(t
¯
) and

nondecreasing just below �x = �(�t): If the type distribution has no singular
component, one has � 0(x) = 1=(1 + f(�(x))) for all x: By the same reasoning
as before, therefore, '̂0q(x¯

+) � 0 and '̂0q(�x�) � 0 would yield (4.59) and (4.60),
with �fa and fa(�(�)) replaced by f(t¯

) = f(�(x
¯
)) and f(�t) = f(�(�x)):With strict

positivity and monotonicity of f and with log-convexity of juy(w;y;t)juw(w;y;t)
in t; one

then again obtains (4.63). Because this is incompatible with the single-crossing
condition, the assumption that there is a pooling interval must be false.

Proof of Proposition 2.6. Proceeding indirectly, suppose that the propo-
sition is false. Then there is an optimal contract menu (w(�); y(�)) that exhibits
a discontinuity at some �t 2 [t0; t1]: If (ŵ(�); ŷ(�)) is the associated solution to
the principal�s modi�ed problem, then (ŵ(�); ŷ(�)) exhibits a discontinuity at
�x = �(�t): Then (ŵ(�); ŷ(�)) is strictly increasing at �x: This implies '̂q(�x) = 0:
By statement (f) in Theorem 4.1, it follows that '̂q is maximal at �x: Therefore
there exist sequences f�kg converging to �x from below and f�`g converging to
�x from above such that '̂0q(�k) � 0 and '̂0q(�`) � 0 for all k and `: By (4.24),
one then has

'̂v(�k)u
k
w

@

@t

��uky��
ukw

� � 0(�k) �
 
1 +

uky
ukw

!
g(�k) (4.64)
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and

'̂v(�
`)u`w

@

@t

��u`y��
u`w

� � 0(�`) �
 
1 +

u`y
u`w

!
g(�`) (4.65)

for all k and `; where uky ; u
k
w are evaluated at (ŵ(�k); ŷ(�k); �(�k)) and u

`
y; u

`
w;

etc. are evaluated at (ŵ(�`); ŷ(�`); �(�`)).
Because the type distribution has a continuous density, Lemma 3.1, yields

� 0(x) =
1

1 + f(�(x))
and g(x) =

f(�(x))

1 + f(�(x))

for all x: Conditions (4.64) and (4.65) can therefore be rewritten as

'̂v(�k)

f(�(�k))
ukw

@

@t

��uky��
ukw

�
 
1 +

uky
ukw

!
(4.66)

and
'̂v(�

`)

f(�(�`))
u`w

@

@t

��u`y��
u`w

�
 
1 +

u`y
u`w

!
: (4.67)

Upon taking limits as k and ` become large, using the continuity of f and � and
the monotonicity of the contract menu, one obtains

'̂v(�x)

f(�(�x))
uw(ŵ(�x�); ŷ(�x�); �(�x))

@

@t

juyj
uw

(ŵ(�x�); ŷ(�x�); �(�x))

�
�
1 +

uy(ŵ(�x�); ŷ(�x�); �(�x))
uw(ŵ(�x�); ŷ(�x�); �(�x))

�
(4.68)

and

'̂v(�x)

f(�(�x))
uw(ŵ(�x+); ŷ(�x+); �(�x))

@

@t

juyj
uw

(ŵ(�x�); ŷ(�x�); �(�x))

�
�
1 +

uy(ŵ(�x+); ŷ(�x+); �(�x))

uw(ŵ(�x+); ŷ(�x+); �(�x))

�
: (4.69)

Because u is strictly quasi-concave in w and y; (ŵ(�x+); ŷ(�x+))� (ŵ(�x�); ŷ(�x�))
implies that the right-hand side of (4.68) is strictly greater than the right-hand
side of (4.69). Because '̂v(�x)

f(�(�x)) < 0 and juyj = �uy; it follows that

uw(ŵ(�x�); ŷ(�x�); �(�x))
@

@t

uy
uw
(ŵ(�x�); ŷ(�x�); �(�x))

> uw(ŵ(�x+); ŷ(�x+); �(�x))
@

@t

uy
uw
(ŵ(�x�); ŷ(�x�); �(�x));

or, equivalently,

uyt(�)�
uy(�)
uw(�)

uwt(�) > uyt(+)�
uy(+)

uw(+)
uwt(+); (4.70)
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where "�" and "+" in the arguments stand in for evaluation at (ŵ(�x�); ŷ(�x�); �(�x))
and (ŵ(�x+); ŷ(�x+); �(�x)): However, since IC implies

u(ŵ(�x�); ŷ(�x�); �(�x)) = u(ŵ(�x+); ŷ(�x+); �(�x));

one easily veri�es that (4.70) is incompatible with the convexity of the function
y ! ut(c(v; y; �(�x)); y; �(�x)). The assumption that the proposition is false has
thus led to a contradiction.
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This Appendix provides formal proofs of Lemmas 2.7 - 2.9 in the text of the
paper.

1 Proof of Lemma 2.7

Lemma 1 (Lemma 2.7) A contract menu (w(�); y(�)) that is de�ned on T �
[t0; t1] is incentive-compatible and individually rational on T if and only if
there exists an extension of (w(�); y(�)) to the interval [t0; t1] that is incentive-
compatible and individually rational on [t0; t1]:

Before proving this lemma, I note some implications of the weak single-
crossing condition, i.e., the requirement that

@

@t

juy(w; y; t)j
uw(w; y; t)

� 0 (1)

for all w; y; and t:

Lemma 2 Let t; �t; and (w; y); ( �w; �y) be such that �t > t; �y < y; and

u(w; y; t) > u( �w; �y; t): (2)

Then
u(w; y; �t) > u( �w; �y; �t): (3)

The argument is practically identical to the argument for the analogous im-
plication of strict single-crossing in Milgrom and Shannon (1994). It is therefore
left to the reader.
Given this result, the following lemma shows that, under the weak single-

crossing condition (1), incentive-compatible contract menus are monotone, un-
less all the relevant types are indi¤erent between the contracts in question.
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Lemma 3 Let t; �t; and (w; y); ( �w; �y) be such that �t > t; �y < y;

u(w; y; t) � u( �w; �y; t) (4)

and
u( �w; �y; �t) � u(w; y; �t): (5)

Then
u( �w; �y; t0) = u(w; y; t0) (6)

for all t0 2 [t; �t]; i.e., all types between t and �t are indi¤erent between the con-
tracts (w; y) and ( �w; �y):

Proof. By Lemma 2, y > �y and (4) imply u(w+ "; y; t0) > u( �w; �y; t0) for all
t0 2 [t; �t] and all " > 0; hence,

u(w; y; t0) � u( �w; �y; t0) (7)

for all t0 2 [t; �t]: Similarly, y > �y and (5) imply

u( �w; �y; t0) � u(w; y; t0) (8)

for all t0 2 [t; �t]: (6) follows immediately.

Lemma 4 A contract menu (w(�); y(�)) that is de�ned on a set X � [t0; t1] is
incentive-compatible on X if and only if, for any t

¯
2 X and �t 2 X such that

(t
¯
; �t)\X = ;; there exists an extension of (w(�); y(�)) to X[(t

¯
; �t) that is incentive-

compatible on X [ (t
¯
; �t).

Proof. The "if"-part of the lemma is trivial. To prove the "only if"-part,
let X � [t0; t1] and suppose that (w(�); y(�)) is incentive-compatible on X: Let
t
¯
2 X and �t 2 X be such that (t

¯
; �t)\X = ;: Incentive compatibility of (w(�); y(�))

on X implies that

u(w(t
¯
); y(t

¯
); t
¯
) � u(w(�t); y(�t); t

¯
) (9)

and
u(w(�t); y(�t); �t) � u(w(t

¯
); y(t

¯
); �t): (10)

Because u is continuous, there exists t̂ 2 [t
¯
; �t] such that

u(w(t
¯
); y(t

¯
); t̂) = u(w(�t); y(�t); t̂): (11)

Extend w(�) and y(�) to the interval (t
¯
; �t) by setting

(w(t); y(t)) = (w(t
¯
); y(t

¯
)) for t 2 (t

¯
; t̂); (12)

(w(t); y(t)) = (w(�t); y(�t)) for t 2 (t̂; �t); (13)

and
(w(t̂); y(t̂)) = (w(�t); y(�t)) if t̂ > t

¯
: (14)
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To prove that the extended contract menu is incentive-compatible, I �rst
note that, if y(�t) � y(t

¯
); then Lemma 2 and (11) imply

u(w(t
¯
); y(t

¯
); t) � u(w(�t); y(�t); t) (15)

for all t 2 (t
¯
; t̂] and

u(w(�t); y(�t); t) � u(w(t
¯
); y(t

¯
); t) (16)

for all t 2 [t̂; �t]: If y(�t) < y(t
¯
); these same inequalities follow from Lemma 3;

indeed, in this case, (15) and (16) must hold as equations for all t 2 [t
¯
; �t]:

Consider the incentive compatibility condition

u(w(t); y(t); t) � u(w(t0); y(t0); t) (17)

for t 2 [t
¯
; �t] and t0 2 X satisfying y(t0) � y(t

¯
): Incentive compatibility of

(w(�); y(�)) on X implies that

u(w(t
¯
); y(t

¯
); t
¯
) � u(w(t0); y(t0); t

¯
) (18)

for all t0 2 X \ [t0;t¯). By Lemma 2, it follows that

u(w(t
¯
); y(t

¯
); t) � u(w(t0); y(t0); t) (19)

for all t 2 [t
¯
; �t]: By (12) - (14) and (15), it follows that

u(w(t); y(t); t) � u(w(t0); y(t0); t): (20)

A precisely symmetric argument shows that (20) must also hold for t 2 [t
¯
; �t] and

t0 2 X satisfying y(t0) � y(�t):
For t0 2 X satisfying y(t

¯
) < y(t0) < y(�t); Lemma 3 implies that

u(w(t
¯
); y(t

¯
); t
¯
) = u(w(t0); y(t0); t

¯
) (21)

if t0 <t
¯
, and

u(w(�t); y(�t); �t) = u(w(t
¯
); y(t

¯
); �t) (22)

if t0 > �t: In either case, one again obtains (20) for all t 2 [t
¯
; �t]:

For t 2 X and t0 2 X [ (t
¯
; �t); the validity of (17) follows trivially from

the incentive compatibility of (w(�); y(�)) on X and the observation that the
extension of the domain of the contract menu to X [ (t

¯
; �t) has not changed its

range.

Proof of Lemma 1. The "if" part of the lemma is trivial. To prove the
"only if" part, observe that the set [t0; t1]nT can be represented as a countable
union of open intervals I1; I2; ::: If one applies Lemma 4 successively, with X1 =
T; (t

¯1
; �t1) = I1; X2 = T [ I1; (t¯2;

�t2) = I2; etc., then, in the limit, one obtains
an extension of (w(�); y(�)) that is incentive compatible on [t0; t1]:
To prove that this extended contract menu is also individually rational, one

notes that, because t0 2 T; the contract (w(t0); y(t0)) that is assigned to the
lowest type has not been changed. By the individual rationality of the original
contract menu, u(w(t0); y(t0); t0) � 0 = u(0; 0; t0): By Lemma 2, it follows that
u(w(t0); y(t0); t) � u(0; 0; t) = 0 for any t > t0: By incentive compatibility, one
also has u(w(t); y(t); t) � u(w(t0); y(t0); t); hence, u(w(t); y(t); t) � 0:
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2 Proof of Lemma 2.8

Lemma 5 (Lemma 2.8) A nondecreasing contract menu (w(�); y(�)) is incentive-
compatible and individually rational on [t0; t1] if and only if the induced indirect
utility function v(�) satis�es the integral equation

v(t) = v(t0) +

Z t

t0

ut(w(�); y(�); �)d� (23)

for t 2 [t0; t1] and, moreover,
v(t0) � 0: (24)

As mentioned in the text, Lemma 5 is little more than a slight generalization
of the characterization result in Mirrlees (1976).

Lemma 6 If a contract menu (w(�); y(�)) is nondecreasing and incentive-compatible
on [t0; t1]; then the induced indirect utility function v(�) satis�es

v(t) = v(t0) +

Z t

t0

ut(w(�); y(�); �)d� (25)

for all t 2 [t0; t1]:

Proof. The argument follows Baron and Myerson (1982). For any t and �t;
incentive compatibility implies

v(t) = u(w(t); y(t); t) � u(w(�t); y(�t); t) (26)

and
v(�t) = u(w(�t); y(�t); �t) � u(w(t); y(t); �t): (27)

From (26) and (27), one obtains

u(w(t); y(t); t)� u(w(t); y(t); �t) � v(t)� v(�t) � u(w(�t); y(�t); t)� u(w(�t); y(�t); �t);
(28)

hence R t
�t
ut(w(t); y(t); �)d�

t� �t � v(t)� v(�t)
t� �t �

R t
�t
ut(w(�t); y(�t); �)d�

t� �t : (29)

Because ut(�; �; �) is continuous and, by monotonicity, the triples (w(t); y(t); �)
and (w(�t); y(�t); �) belong to the compact set [0; w(t1)] � [0; y(t1)] � [t0; t1]; the
integrands on both sides of (29) are uniformly bounded. The function v(�) is
therefore Lipschitz continuous, hence absolutely continuous on [t0; t1]:
If t is a continuity point of the contract menu (w(�); y(�)) and if �t is close

to t; then, by standard arguments, the right-hand side and the left-hand side
of (29) are both approximately equal to ut(w(t); y(t); t): In this case, the (or-
dinary) derivative of v(�) at t exists and is equal to ut(w(t); y(t); t): Because
the nondecreasing function t! (w(t); y(t)) has at most countably many points
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of discontinuity, it follows that the function t ! ut(w(t); y(t); t) is a Radon-
Nikodym derivative for the absolutely continuous function v(�): The validity of
(25) follows immediately.

Lemma 7 If a contract menu (w(�); y(�)) on an interval [t0; t1] is nondecreasing
and the induced indirect utility function v(�) satis�es the integral equation (25),
then (w(�); y(�)) is incentive-compatible on [t0; t1]:

Proof. The argument follows Mirrlees (1976); see also Appendix B in the
online version of Hellwig (2007). For any t and �t; (25) implies

u(w(t); y(t); t)� u(w(�t); y(�t); �t) =
Z t

�t

ut(w(�); y(�); �)d�: (30)

Because the left-hand side of (30) is equal toZ t

�t

uw(w(�); y(�); �)dw(�)+

Z t

�t

uy(w(�); y(�); �)dy(�)+

Z t

�t

ut(w(�); y(�); �)d�;

it follows thatZ t

�t

uw(w(�); y(�); �)dw(�) +

Z t

�t

uy(w(�); y(�); �)dy(�) = 0 (31)

for all t and �t: By standard arguments, it follows that, for every measurable
function f; one hasZ t1

t0

f(�)uw(w(�); y(�); �)dw(�) +

Z t1

t0

f(�)uy(w(�); y(�); �)dy(�) = 0: (32)

In particular, therefore,Z t

�t

�(� ; t)uw(w(�); y(�); �)dw(�) +

Z t

�t

�(� ; t)uy(w(�); y(�); �)dy(�) = 0 (33)

for every �t; t; and every measurable function �: If one sets �(� ; t) = uw(w(�);y(�);t)
uw(w(�);y(�);�)

;

one infers that Z t

�t

uw(w(�); y(�); t)dw(�)

+

Z t

�t

uw(w(�); y(�); t)

uw(w(�); y(�); �)
uy(w(�); y(�); �)dy(�) = 0 (34)

for all �t; t; and � between �t and t:
The single-crossing condition implies that

uw(w(�); y(�); �)

juy(w(�); y(�); �)j
Q uw(w(�); y(�); t)

juy(w(�); y(�); t)j
as � Q t;
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hence, since uy takes negative values,

uy(w(�); y(�); �)

uw(w(�); y(�); �)
Q uy(w(�); y(�); t)

uw(w(�); y(�); t)
as � Q t: (35)

Because uw takes positive values and y(�) is nondecreasing, (34) and (35) imply
that Z t

�t

uw(w(�); y(�); t)dw(�) +

Z t

�t

uy(w(�); y(�); t)dy(�) � 0 (36)

for all t and �t: Therefore,

u(w(t); y(t); t)� u(w(�t); y(�t); t) � 0 (37)

for all t and �t:

Lemma 8 A contract menu (w(�); y(�)) that is incentive-compatible on an in-
terval [t0; t1] has induced utility satisfying v(t) � 0 if and only if v(t0) � 0:

Proof. It su¢ ces to observe that, by (25), v(�) is a nondecreasing function.

Lemma 5 follows from Lemmas 6 - 8.

3 Proof of Lemma 2.9

Lemma 9 (Lemma 2.9) For any incentive-compatible contract menu (w(�); y(�)),
there exists a nondecreasing incentive-compatible contract menu ( �w(�); �y(�)) that
provides the agent with the same payo¤ v(t) = u(w(t); y(t); t) for all t and that
satis�es Z

[�y(t)� �w(t)]dF (t) �
Z
[y(t)� w(t)]dF (t); (38)

moreover, the inequality in (38) is strict unless the contract menus (w(�); y(�))
and ( �w(�); �y(�)) are equivalent.

To prove this lemma, I need a stronger version of Lemma 3. The following
result implies that, if an incentive-compatible contract menu violates monotonic-
ity, then, in the relevant part of their domains, the indi¤erence curves of the
relevant types must coincide.

Lemma 10 If any two types t and �t are both indi¤erent between two contracts
(w; y) and ( �w; �y) << (w; y); then, between these two contracts, their indi¤erence
curves coincide, i.e., for any (w0; y0) with ( �w; �y) � (w0; y0) � (w; y);

u(w0; y0; t) = u(w; y; t) if and only if u(w0; y0; �t) = u( �w; �y; �t): (39)

6



Proof. Without loss of generality, suppose that t � �t: If ( �w; �y) � (w0; y0) �
(w; y); then, by Lemma 2,

u(w0; y0; t) = u(w; y; t) (40)

implies u(w0; y0 + "; �t) < u(w; y; �t) for all " > 0; hence,

u(w0; y0; �t) � u(w; y; �t): (41)

Because type t is indi¤erent between (w; y) and ( �w; �y) and because ( �w; �y) �
(w0; y0); by Lemma 2, (40) also implies u(w0 + "; y0; �t) > u( �w; �y; �t) for all " > 0;
hence,

u(w0; y0; �t) � u( �w; �y; �t): (42)

Because type �t is also indi¤erent between (w; y) and ( �w; �y); (41) and (42) imply

u(w0; y0; �t) = u( �w; �y; �t): (43)

Thus, (40) implies (43). By a precisely symmetric argument, one also �nds that
(43) implies (40).

To proceed with the proof of Lemma 9 itself, I need some additional nota-
tion. Given an incentive-compatible contract menu (w(�); y(�)) with associated
indirect utility function v(�); for any t; let

I(t) = f�t 2 T ju(w(�t); y(�t); t) = v(t) and u(w(t); y(t); �t) = v(�t)g (44)

be the set of types �t such that both t and �t are indi¤erent between the pairs
(w(t); y(t)) and (w(�t); y(�t)): By Lemma 3, we know that, for any t; the set I(t)
contains any �t > t for which y(�t) < y(t); indeed, if such �t exists, the set I(t) has
the entire interval [t; �t] as a subset: By Lemmas 3 and 10 jointly, in this case,
the set I(t) also contains any t0 < �t for which y(t0) � y(�t); indeed, it has the
entire interval [t0; �t] as a subset.
Given the set I(t); let

�(t) := f(w; y)ju(w; y; t) = v(t) and y(t0) � y � y(t00) for some t0; t00 2 I(t)g
(45)

be the segment of type t�s indi¤erence curve through (w(t); y(t)) that lies "be-
tween" the contracts assigned to types in I(t); and let ��(t) be the closure of
�(t): Any contract (w; y) in ��(t) provides type t with the same utility v(t) as the
contract (w(t); y(t)): It is therefore of interest to ask which of these contracts is
most pro�table for the principal.

Lemma 11 If (w(�); y(�)) is an incentive-compatible contract menu, then, for
any t 2 [t0; t1]; the problem

max
(w;y)2��(t)

[y � w] (46)

has a unique solution ( �w(t); �y(t)): The contract menu ( �w(�); �y(�)) is nondecreas-
ing and incentive-compatible.
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Proof. Uniqueness of the solution to the problemmax(w;y)2��(t)[y�w] follows
from the strict quasi-concavity of u in w and y: To prove weak monotonicity,
suppose that t < �t and �y(t) > �y(�t): By Lemma 3, one has �t 2 I(t). By the
de�nition of I(�); it follows that I(t) = I(�t): By Lemma 10, one then also
has �(t) = �(�t); hence ��(t) = ��(�t). Because the solution to problem (46) is
unique and depends on t only through the constraint set ��(t); it follows that
( �w(t); �y(t)) = ( �w(�t); �y(�t)): The assumption that t < �t and �y(t) > �y(�t) has thus
led to a contradiction and must be false. Thus t < �t implies �y(t) � �y(�t). Weak
monotonicity of �w(�) then follows from incentive compatibility.
By construction,

u( �w(t); �y(t); t) = v(t) (47)

for all t: To prove incentive compatibility, it therefore su¢ ces to show that

v(t) � u( �w(�t); �y(�t); t) (48)

for all t and all �t: Since ( �w(�t); �y(�t)) 2 ��(�t); there exists a sequence f(wk(�t); yk(�t))g
of elements of �(�t) that converges to ( �w(t); �y(t)): To prove (48), it therefore suf-
�ces to show that

v(t) � u(wk(�t); yk(�t); t) (49)

for all k:
By the de�nition of �(�t); there exist sequences f�t0kg; f�t00kg of elements of I(�t)

such that, for any k; one has

y(�t0k) � yk(�t) � y(�t00k); (50)

moreover,

u(wk(�t); yk(�t); �t) = u(w(�t0k); y(�t
0
k); �t) = u(w(�t

00
k); y(�t

00
k); �t): (51)

If t < �t; (50) and (51) in combination with Lemma 2 imply

u(wk(�t); yk(�t); t) � u(w(�t0k); y(�t0k); t): (52)

Because incentive compatibility requires

v(t) � u(w(�t0k); y(�t0k); t); (53)

(49) follows immediately. If t > �t; one similarly obtains

u(wk(�t); yk(�t); t) � u(w(�t00k); y(�t00k); t) � v(t); (54)

which also yields (49).

To establish Lemma 9, it now su¢ ces to observe that, by construction, one
has

�y(t)� �w(t) � y(t)� w(t) (55)

for all t; and that the inequality in (55) is strict unless (w(t); y(t)) = ( �w(t); �y(t)):
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