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Abstract

This paper studies the design of optimal utilitarian mechanisms for
an excludable public good. Excludability provides a basis for making
people pay for admissions; the payments can be used for redistribu-
tion and/or funding. Whereas previous work assumed that admissions
are governed by the payment or nonpayment of a price, this paper al-
lows for arbitrary admission rules. With su¢ cient inequality aversion,
nondegenerate randomization in admissions is shown to be desirable
for certain model speci�cations, with and without participation con-
straints. The paper also gives a su¢ cient condition on the distribution
of preferences under which randomization is undesirable.
JEL Classi�cation: D61, D63, H21, H41
Keywords: Utilitarian welfare maximization; Admission rules for

excludable public goods; Randomization in optimal mechanisms

1 Introduction

This paper studies the design of optimal utilitarian mechanisms for an ex-
cludable public good. Excludability provides a basis for making people pay
to enjoy the public good. As discussed by Schmitz (1997) and Norman
(2004), such payments can be used to �nance the public good. As discussed

�It is a pleasure to acknowledge helpful comments from Felix Bierbrauer, Christoph
Engel and Hendrik Hakenes.
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by Hellwig (2005), such payments can also be used to provide for redistri-
bution from people who get a lot of enjoyment out of the public good to
people who get little enjoyment out of it.

If payment of a fee is required for admission, there must be exclusion
of people for whom the bene�ts from the public good are not worth the
admission fee. If there is nonrivalry in the enjoyment of the public good,
such exclusion is ine¢ cient. With incomplete information, however, the in-
e¢ ciency may be outweighed by the bene�ts of obtaining funds for �nancing
the public good or for redistribution.

In Hellwig (2005), I studied the use of exclusion to raise funds for redis-
tribution under the assumption that exclusion is governed by an admission
fee so that people who pay the fee are admitted and people who do not
pay the fee are not admitted to the enjoyment of the public good. By con-
trast, Schmitz (1997) and Norman (2004) studied the use of exclusion to
raise funds for public-goods �nance without such an assumption and proved
that, under a regularity condition on the distribution of preferences, an op-
timal mechanism is characterized by an admission fee. Other mechanisms,
in particular, mechanisms involving randomization in admissions, cannot be
optimal.

Like Schmitz (1997) and Norman (2004), this paper studies the use of
exclusion as a basis for raising funds without any prior assumption on the
form of the incentive mechanism. In particular, it allows for mechanisms
with nondegenerate randomization in admissions. Like Hellwig (2005), the
paper allows for inequality aversion of the mechanism designer.

Mechanisms with nondegenerate randomization in admissions will in fact
be shown to be optimal for certain model speci�cations. Under these mech-
anisms, there is a range of preference parameters where agents are given
lotteries with admission probabilities that lie strictly between zero and one.
Over the given range, admission probabilities as well as payments are strictly
increasing functions of the preference parameters. These mechanisms with
randomized admissions dominate the simple admission fee mechanisms in
Hellwig (2005).

The �nding that mechanisms with randomized admissions can dominate
simple admission fee mechanisms is robust to the introduction of partici-
pation constraints. When participation constraints are imposed, admission
fees are needed for public-good �nance as well as redistribution. Except for
the inequality aversion of the mechanism designer, the mechanism design
problem is the same as the problem studied by Schmitz (1997) and Nor-
man (2004). For the same model speci�cations as before, in this problem,
mechanisms with randomized admissions are again optimal. The �nding of
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Schmitz (1997) and Norman (2004) that simple admission fee mechanisms
are optimal is thus not robust to the introduction of (a su¢ ciently large
degree of) inequality aversion of the mechanism designer.

In the examples given, the regularity condition that Schmitz (1997) and
Norman (2004) had imposed on the cross-section distribution of the underly-
ing preference parameter is always satis�ed. The desirability of randomized
admissions hinges on another feature of the cross-section distribution of
preferences; in the examples where randomization is desirable the elasticity
of the density of this distribution is decreasing in the preference parame-
ter. The paper also shows that, if the elasticity of the density function
is nondecreasing in the preference parameter, then a second-best mecha-
nism is necessarily characterized by an admission fee, i.e., randomization
in admissions is undesirable. Remarkably, the monotonicity condition on
the density function is that the same as the condition that Manelli and
Vincent (2006) used to show that randomization is undesirable in the two-
dimensional mechanism design problem of a pro�t-maximizing monopolist
selling two goods to consumers with additively separable preferences when
the preference parameters for the di¤erent goods are mutually independent.

In the following, Section 2 lays out the basic model and formulates the
utilitarian welfare maximization problem. Section 3 shows that this prob-
lem has a unique solution and gives necessary and su¢ cient conditions for
this solution. Section 4 discusses the equity-e¢ ciency tradeo¤ and consid-
ers the dependence of optimal admission rules on the mechanism designer�s
inequality aversion. Section 5 shows that, for a parametrized set of model
speci�cations, it is desirable to have randomized admissions. This section
also shows that randomization is undesirable if the elasticity of the den-
sity function of the preference parameter distribution is nondecreasing in
the preference parameter. Section 6 shows that, except for some obvious
modi�cations, the results of the paper remain valid if interim participation
constraints are imposed and admission fees are needed for public-good �-
nance as well as redistribution. Section 7 discusses the robustness of the
analysis to the introduction of risk aversion of th eparticipants along with
inequality aversion of the mechanism designer. Proofs are given either in
the Appendix or in the Supplementary Material for the online version of this
article; see also the Appendix to Hellwig (2009).
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2 The Utilitarian Mechanism Design Problem

I study a large-economy version of the model considered in Schmitz (1997),
Norman (2004), and Hellwig (2005). There are two goods in the economy,
a private good and a public good, which is assumed to be excludable. The
public good can be provided in one indivisible unit.1 People in the econ-
omy must determine a public-good provision level Q 2 f0; 1g and, for each
individual h in the economy, a level ch of private-good consumption and a
public-good admission decision �h where �h = 1 if the individual is admit-
ted and �h = 0 if the individual is not admitted to the enjoyment of the
public good. Given the triple Q; ch; �h; the individual obtains the payo¤

ch + �h�hQ; (2.1)

where �h is a parameter that determines the strength of his desire to enjoy
the public good.

By an anonymity condition, the level ch of private-good consumption
and the public-good admission decision �h depend on h only through the
taste parameter �h and through the realization ih of an exogenously given
indicator variable ~{h; which is introduced to allow for randomized allocations.
An allocation is thus de�ned as a triple (Q; c(�; �); �(�; �)) such that Q is the
level of public-good provision and, for each individual h in the economy, one
has

ch = c(�h; ih) and �h = �(�h; ih): (2.2)

For each h; the parameter �h is taken to be the consumer�s private in-
formation. From the perspective of the other consumers, or of the system

as a whole, �h is the realization of a random variable ~�
h
; which takes val-

ues in the unit interval and has a probability distribution F with a strictly
positive, continuously di¤erentiable density f . The random variable ~{h also
takes values in the unit interval and has a uniform distribution, denoted

as �: The random variables ~�
h
and ~{h are independent; thus, knowing that

~�
h
= �h does not provide the consumer with any information about ~{h:

The distribution F � � of the random pair (~�
h
;~{h) is assumed to be the

same for all agents. I also assume that there is a large-numbers e¤ect so
that, with probability one, F � � is the cross-section distribution of the
pair (�h; ih) in the population. Indeed, I impose the stronger assumption

1This assumption is made for ease of exposition. Along the lines of Hellwig (2005),
the analysis is easily extended to the case where the level of public-good provision is a
continuous variable.
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that, with probability one, F � � is the cross-section distribution of the pair
(�h; ih) in any nonnegliglible subset of the population.

These large-nimbers e¤ects justify the identi�cation of anonymity with
the restrictions that the level of public-good provision be a constant and
that the outcome variables ch and �h for agent h depend only on �h and ih:
If the cross-section distribution of preferences in the economy is the same in
every state of nature, anonymity requires that the assessment of whether it is
desirable to have the public good or not should be the same in every state of
nature. If the cross-section distribution of preferences in any nonnegligible
subset of the population is the same in every state of nature, then this

distribution does not contain any information about the pair (~�
h
;~{h) for any

h; therefore, there is no scope for using such information in order to reduce
the incentive e¤ects of information about �h being private.

This reader who wonders about the underlying stochastic speci�cation
is referred to Sun (2006). For a suitable speci�cation of an atomless mea-
sure space of agents with random characteristics, Theorem 2.8, p. 39, in Sun
(2006) shows that the cross-section distribution of characteristics in any sub-
set of agents with positive measure satis�es the law of large numbers if and
only if the di¤erent agents�random characteristics are essentially pairwise
independent; in the present context, essential pairwise independence means

that, for almost every agent h; the random pairs (~�
h
;~{h) and (~�

h0
;~{h

0
) are

independent for almost every h0 6= h: The key to his result lies in the as-
sumption that the space of agents is endowed with a su¢ ciently rich algebra
of measurable sets so that, by taking a suitable extension of the product
of this algebra with the algebra of events on the space of possible states of
nature, one obtains Fubini�s Theorem for any function specifying the char-
acteristics of di¤erent agents in di¤erent states of nature.2 The resulting
�-algebra is necessarily much richer than the Borel or Lebesgue �-algebra
that has traditionally been used in specifying atomless measure spaces of
agents.3

2The existence of such measure space speci�cations is established in Section 5 of Sun
(2006). See also Sun and Zhang (2009) and Podczeck (forthcoming).

3By having this richer structure of measurable sets, Sun avoids the well known di¢ -
culties that arise in models with stochastic independence of agent characteristics when
the space of agents is endowed with the Borel or Lebesgue, or indeed any other countably
generated �-algebra. In such a model, with independence of the random variables ~�

h
, for

almost all states of nature !; the function h! ~�
h
(!) that speci�es each agent�s preference

parameter in the state ! is not measurable, and it is not clear what one means when one
talks about the cross-section mean of the preference parameter. Treating such functions
as elements of an uncountable-product space, Judd (1985) had suggested that a suitable
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Allocations are assessed according to the functionalZ Z
W (c(�; i) + ��(�; i)Q) d�(i)dF (�); (2.3)

where W (�) is a welfare function. The integral (2.3) represents the cross-
section average (aggregate) of the welfare levels W (c(�; i) + ��(�; i)Q) that
are associated with the payo¤s c(�; i)+��(�; i)Q of the di¤erent participants.
The allocation problem is to maximize (2.3) over the set of admissible al-
locations. Admissibility will be de�ned in terms of feasibility and incentive
compatibility. In some parts of the analysis, I will also impose a condition
of individual rationality, i.e., a participation constraint.

The economy has an exogenously given per-capita production capacity
that is equivalent to Y units of private-good consumption. An allocation is
feasible if the sum of aggregate private-good consumption and public-good
provision costs does not exceed the available capacity, i.e., ifZ Z

c(�; i)d�(i)dF (�) +K(Q) � Y; (2.4)

where K(Q) is the cost of providing the public good at the level Q: Because
of nonrivalry in consumption, there are no costs to people enjoying the public
good once it is installed.

An allocation is incentive-compatible if, for any � 2 [0; 1]; the expected
payo¤

v(�) :=

Z
c(�; i)d�(i) + �Q

Z
�(�; i)d�(i) (2.5)

of a consumer with preference parameter � satis�es the inequality

v(�) �
Z
c(�0; i)d�(i) + �Q

Z
�(�0; i)d�(i) (2.6)

for all �0 2 [0; 1]: The allocation is individually rational if

v(�) � Y (2.7)

for all �; i.e., if each agent is at least as well o¤ as if the public good was not
provided at all. This speci�cation of individual rationality presumes that all

extension of the induced measure on this space might yield a law of large numbers; he
had also warned, however, that, by taking other extensions, one would obtain other ver-
sions of the model in which the law of large numbers did not apply. Feldman and Gilles
(1985) showed that there is no one extension which provided a law of large numbers for
all nonnegligible sets of agents.
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agents have the same production capacity. By this presumption, I abstract
from distributive concerns other than those that are due to heterogeneity in
tastes for the public good.

The following assumptions are imposed throughout.

A.I The cost function K(�) satis�es K(0) = 0 and K(1) = �K where 0 �
�K < max� �(1� F (�)).

A.II The welfare function W (�) in (2.3) is strictly increasing, strictly con-
cave, and twice continuously di¤erentiable.

Assumption A.I ensures that it is always desirable to have a positive
level of public-good provision. Whereas an anonymous allocation without
public-good provision provides people with the payo¤ Y , everybody can get
a payo¤ greater than Y if one sets Q = 1 and, for some p;

c(�) = Y � �K + p(1� F (p)) and �(�; i) = 0; if � < p; (2.8)

and
c(�) = Y � �K � pF (p) and �(�; i) = 1; if � � p: (2.9)

This allocation is obtained if admission to the public good is conditioned on
the payment of a fee p:Whereas people with � < p do not ask for admission,
people with � � p ask for admission and pay the fee p: The allocation is
obviously incentive-compatible and feasible. For any �, a person with taste
parameter � achieves the payo¤

v(�) = Y � �K + p(1� F (p)) + max(� � p; 0): (2.10)

Under Assumption A.I, p can be chosen so that p(1� F (p)) > �K: For such
p; one has v(�) > Y for all �:

Assumption A.II expresses the notion that the planner is inequality-
averse. If the preference parameters of the di¤erent consumers were publicly
observable, he would thus choose an allocation satisfyingQ = 1 and �(�; i) =
1; c(�) = c(0) � � for all � and i: Everybody would be admitted to the
enjoyment of the public good, and the payo¤ levels v(�) would all be equal
to v(0) = Y � �K + E~�:

However, this �rst-best allocation is not incentive compatible. If �(�; i) =
1 and c(�) = Y � �K +E~�� � for all � and i; then any consumer with � > 0
has an incentive to understate his preference for the public good in order
to raise his consumption of the private good without having to reduce his
enjoyment of the public good.
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The incompleteness of information calls for some compromise with �rst-
best e¢ ciency. Given the nonrivalry in consumption, e¢ ciency considera-
tions call for open admissions. With open admissions, however, payments
cannot be conditioned on �: Private-good consumption then is the same for
all agents, and agents with high � are strictly better o¤ than agents with low
�: Indeed, agents with � < �K are strictly worse o¤ than they would be if the
public good was not provided at all. Such an arrangement is incompatible
with individual rationality. Even if individual rationality is not imposed,
the unequal distribution of payo¤s may give rise to equity concerns calling
for some redistribution from agents with high � to agents with low �: To
provide for such redistribution, or to �nance the public good at all partic-
ipation constraints are imposed, one needs to raise funds from agents with
high �: For this purpose, there must be a threat of exclusion that discourages
agents with high � from claiming that they really do not care for the public
good and therefore should not have to pay anything.

In the following, I �rst consider second-best mechanisms when participa-
tion constraints are not imposed. Subsequently, in Section 6, I will extend
the analysis by imposing individual rationality, in addition to feasibility and
incentive compatibility.

3 Preliminary Results

For any �; let

C(�) =

Z
c(�; i)d�(i) and �(�) =

Z
�(�; i)d�(i) (3.1)

be the expectations of c(~�
h
;~{h) and �(~�

h
;~{h) conditional on the information

that ~�
h
= �: The feasibility and incentive compatibility conditions (2.4) -

(2.6) can then be rewritten asZ 1

0
C(�)dF (�) +K(Q) � Y; (3.2)

v(�) = C(�) + ��(�)Q; (3.3)

and
v(�) � C(�0) + ��(�0)Q: (3.4)

These conditions constrain the mechanism designer only with respect to
Q and the conditional-expectations functions C(�) and �(�), not with respect
to the choice of c(�; �) and �(�; �) when C(�) and �(�) are taken as given.
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The problem of choosing an admissible allocation to maximize (2.3) can
therefore be decomposed into two steps. First, for any given Q;C(�); and
�(�), the problem is to determine the optimal c(�; �) and �(�; �) subject to the
constraint that (3.1) be satis�ed for all �; for the stipulated C(�) and �(�).
Second, the problem is to determine the optimal Q;C(�); and �(�). Because
W (�) is strictly concave, the �rst of these steps is trivial: The mechanism
designer chooses c(�; �) and �(�; �) so as to eliminate all remaining risk from
people�s payo¤s. This observation yields:

Lemma 3.1 Let Q;C(�); and �(�) be given, and let v(�) be the associated
expected-payo¤ function. If c(�; �) and �(�; �) maximize (2.3) under the con-
straint that (3.1) be satis�ed for all �; for the stipulated C(�); �(�); then

c(�; i) = v(�)� �(�; i)�Q (3.5)

for F � �-almost all (�; i):

Given (3.5) and (3.3), the welfare functional (2.3) and the feasibility
constraint (3.2) can be rewritten asZ 1

0
W (v(�))dF (�) (3.6)

and Z 1

0
[v(�)�Q��(�)]dF (�) � Y �K(Q): (3.7)

Further, by standard arguments, due to Mirrlees (1976), the incentive com-
patibility conditions (3.3) and (3.4) are satis�ed for all � and �0 if and only
if Q and the functions v(�); C(�) and �(�) are such that �(�) is nondecreasing,
and

v(�) = v(0) +Q

Z �

0
�(�)d� (3.8)

for all � 2 [0; 1]:4 The conditional expectation �(�) of the admission indicator
variable �(�;~{h) is, of course, the probability that a person with preference
parameter � will be admitted to the enjoyment of the public good.

The problem of maximizing (2.3) subject to feasibility and incentive
compatibility is thus equivalent to the problem of choosing a public-good
provision level Q; an expected-payo¤ function v(�); and a nondecreasing
admission probability function �(�) so as to maximize (3.6) subject to (3.7)

4See, e.g., Chapter 7 in Fudenberg and Tirole (1991).
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and the condition that v(�) satisfy (3.8) hold for all � 2 [0; 1]: I will refer to
this latter problem as the reduced utilitarian problem.

As discussed above, Assumption A.I implies that an allocation without
public-good provision is Pareto-dominated by an allocation with public-good
provision �nanced by admission fees. This observation yields:

Lemma 3.2 Any solution to the reduced utilitarian problem satis�es Q = 1:

For the record, I also state:

Proposition 3.3 The reduced utilitarian problem has a solution. The solu-
tion is unique up to modi�cations of �(�) at discontinuity points, which form
a null set.

Corollary 3.4 The problem of maximizing (2.3) over the set of feasible and
incentive-compatible allocations has a solution. The solution is unique up to
modi�cations

To get some insight into the nature of optimal solutions, I reformulate
the reduced utilitarian problem so that the role of the admission probability
function becomes clearer. If (3.8) is used to substitute for v(�); with Q = 1;
the welfare functional (2.3) and the feasibility condition (3.2) take the formZ 1

0
W

�
v(0) +

Z �

0
�(�)d�

�
dF (�) (3.9)

and

v(0) � Y � �K +

Z 1

0
��(�)dF (�)�

Z 1

0

Z �

0
�(�)d�dF (�): (3.10)

According to (3.9), aggregate welfare depends on the base consumption v(0)
that is available to everybody and on the information rents

R �
0 �(�)d� that

people get according to their taste parameters. The admission probability
rule �(�) determines the gross payo¤s ��(�) that people get from the en-
joyment of the public good, the information rents

R �
0 �(�)d�; and, through

(3.10), the maximum level of the base consumption v(0) that is feasible.
Because of information rents, people with high � have higher payo¤s

than people with low �: Because W is strictly concave, therefore, some re-
distribution from people with high � to people with low � would seem to be
desirable. The question is which admission probability rule will best serve
this purpose.
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The e¤ects of changes in �(�) on the right-hand side of (3.10) are am-
bivalent: On the one hand, an increase in �(�) raises the gross expected
bene�t ��(�) of a person with taste parameter � and therefore the amount
that this person is willing to pay; on the other hand, this increase also raises
the information rents

R ��
0 �(�)d� of all persons with taste parameters

�� above
�; lowering the amounts that they can be made to pay.

To study the resulting tradeo¤, I use the control theoretic approach of
Mirrlees (1971). Recalling that F has a density f; I rewrite (3.6) and (3.7)
as Z 1

0
W (v(�))f(�)d� (3.11)

and Z 1

0
[v(�)� ��(�)]f(�)d� � Y � �K; (3.12)

where I have also used Q = 1: I also note that the incentive compatibil-
ity condition (3.8) is equivalent to the requirement that v(�) be absolutely
continuous with (Radon-Nikodym) derivative v0(�) satisfying

v0(�) = �(�) (3.13)

for almost all �: The reduced utilitarian problem is therefore equivalent to
the problem of choosing v(�) and a nondecreasing function �(�) so as to
maximize (3.11) subject to (3.12) and to (3.13) holding for almost all �:
Except for the requirement that �(�) be nondecreasing (the second-order
condition for incentive compatibility), this is a standard problem of optimal
control with state variable v; and control variable �:

Again following Mirrlees (1971), I neglect the monotonicity condition on
�(�) and study the relaxed utilitarian problem of maximizing (3.11) subject
to only (3.12) and (3.13). If a solution to this problem happens to satisfy
the monotonicity constraint on �(�); it is also a solution to the reduced
utilitarian problem.5

The relaxed utilitarian problem is a standard optimal-control problem
with Hamiltonian

H =W (v(�))f(�) + �[(Y � �K � v(�) + ��(�)]f(�) + '(�)�(�): (3.14)

For this problem, standard arguments yield:
5 If a solution to the relaxed utilitarian problem fails to satisfy the monotonicity con-

straint on �(�); one must take recourse to the methods of Guesnerie and La¤ont (1984)
and Hellwig (2008). In the present context, there is little point in dealing with this com-
plication.
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Proposition 3.5 The pair (v(�); �(�)) is a solution to the relaxed utilitarian
problem if and only if there exist a scalar � and an absolutely continuous
function ' from [0; 1] into R such that

'(0) = '(1) = 0 (3.15)

and, for almost all � 2 [0; 1];

'0(�) = �(W 0(v(�))� �)f(�) (3.16)

and
�(�) 2 arg max

�2[0;1]
�[��f(�) + '(�)]: (3.17)

In this proposition, � is the Lagrange multiplier of the feasibility con-
straint (3.12); (3.16) provides the usual condition for the "dynamics" of the
costate variable ' that corresponds to the state variable v; and (3.15) the
transversality conditions for v at � = 0 and � = 1: By integration of (3.16),
(3.15) and (3.16) are found to be equivalent to the requirements that

'(�) =

Z 1

�
[W 0(v(�))� �] f(�)d� (3.18)

for all � 2 [0; 1] and Z 1

0
W 0(v(�))dF (�) = �; (3.19)

Condition (3.17) re�ects the maximum principle. Because the maximand
is linear in �; this condition is equivalent to the Kuhn-Tucker conditions

��f(�) + '(�) � 0 if �(�) = 0; (3.20)

��f(�) + '(�) = 0 if �(�) 2 (0; 1); (3.21)

��f(�) + '(�) � 0 if �(�) = 1: (3.22)

4 Inequality Aversion and the Equity-E¢ ciency
Tradeo¤

Conditions (3.20) - (3.22) show that, for any �; the optimal choice of �(�)
depends on the sign of the expression

g(�) := ��f(�) + '(�): (4.1)
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If g(�) < 0; �(�) must be zero; if g(�) > 0; �(�) must be one. If �(�) is to
take an intermediate value, the terms ��f(�) and �'(�) must just balance
so that g(�) = 0: The terms ��f(�) and �'(�) must also just balance, if �
is a point at which �(�) jumps from �(�0) = 0 for �0 < � to �(�0) = 1 for
�0 > �.6

These conditions re�ect an equity-e¢ ciency tradeo¤. This tradeo¤ has
a similar structure as the equity-e¢ ciency tradeo¤ in optimal utilitarian
income taxation, e.g., equation (27) in Mirrlees (1971) or equation (6.17) in
Hellwig (2007 b). To gain some insight into its nature, I use (3.18) to write

g(�) = ��f(�) +

Z 1

�
W 0(v(�))f(�)d� � �(1� F (�)): (4.2)

The �rst term on the right-hand side of (4.2) corresponds to the allocative
e¤ect, the second and third terms to the distributive e¤ect of a small increase
in admission probabilities on a small interval above �:

If, for some small � > 0 and � > 0; the admission probability is raised
from �(�0) to �(�0)+� for �0 2 [�; �+�), there is an allocative e¤ect because
more people with �0 2 [�; � + �) obtain admission to the public good. This
allocative e¤ect provides an e¢ ciency gain because the additional admissions
involve no resource costs. Because private-good consumption satis�es (3.3),
the gain takes mainly the form of additional revenues for the mechanism
designer, an increase in the term

R 1
0 ��(�)dF (�) in (3.12). The amount of

the increase is approximately �
R �+�
� �0dF (�0) � ���f(�): The �rst term on

the right-hand side of (4.2) corresponds to this e¤ect, de�ated by ��:
If, for some small � > 0 and � > 0; the admission probability is raised

from �(�0) to �(�0)+� for �0 2 [�; �+�), there is also a distributive e¤ect. As
a result of the change, the information rent v̂(�0) =

R �0
0 �(�)d� of people with

�0 > �+ � goes up. This raises the private-good consumption of people with
�0 > � + � and lowers the mechanism designer�s revenues. The increase in
private-good consumption of people with �0 > �+� is equal to �� each. The
decrease in the mechanism designer�s is equal to ��(1�F (�)). The e¤ect on
aggregate welfare is approximately equal to��

R 1
� W

0(v(�))f(�)d�����(1�
F (�)) The second and third terms on the right-hand side of (4.2) correspond
to this e¤ect, de�ated by ��:

Conditions (3.20) - (3.22) show that, if � is a point of increase of �(�), the
allocative and distributive e¤ects of a small change in � on a small interval
[�; � + �) just balance each other. If � > 0; the allocative e¤ect always

6 In this case, one has ��0f(�0) + '(�0) � 0 for �0 < � and ��0f(�0) + '(�0) � 0 for
�0 > �; and, by continuity, ��f(�) + '(�) = 0:
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involves a welfare gain. If � 2 (0; 1); the distributive e¤ect always involves
a net welfare loss, i.e., the increase in information rents for people with
�0 > � + � is outweighed by the decrease in v(0); whereas the reduction in
v(0) hits everybody, the increase in information rents only accrues to people
with taste parameter above � whose welfare weights on average are lower
than the population average welfare weight.7

The size of the distributive e¤ect and the tradeo¤ between the distrib-
utive e¤ect and the allocative e¤ect depend on the mechanism designer�s
inequality aversion. According to Atkinson (1973), a suitable measure of
inequality aversion is provided by the relative curvature �W (v) := �W 00(v)

W 0(v)
of the welfare function. The following results characterize the solutions to
the reduced utilitarian problem for extreme values of this measure.8

Proposition 4.1 There exists A > 0 such that, if �W (v) � A for all v;
then the solution to the reduced utilitarian problem satis�es �(�) = 1 and
v(�) = Y � �K + � for all �:

Proposition 4.2 Let pM = min argmax� �(1�F (�)) be the smallest monopoly
price, and let �M (�) be the admission rule that people get admitted if and
only if they pay pM ; i.e., �M (�) = 0 for � 2 [0; pM ) and �M (�) = 1 for � 2
(pM ; 1]: If fWkg is a sequence of welfare functions such that limk!1 �Wk

(v) =
1; uniformly in v; the solutions (vk(�); �k(�)) to the associated reduced util-
itarian problems satisfy

lim
k!1

vk(�) = Y � �K + pM (1� F (pM )) + max(� � pM ; 0) (4.3)

for all �; and
lim
k!1

�k(�) = �M (�) (4.4)

for all � 6= pM :

Proposition 4.1 stands in contrast to �ndings on nonlinear income taxa-
tion which show that, whenever there is inequality aversion, no matter how

7Technically, the fact that the distributive e¤ect involves a welfare loss is re�ected in
the negativity of the costate variable '(�): By (3.15), (3.16), the monotonicity of v(�);
and the strict concavity of W (�); there exists �� 2 (0; 1) so that, on the interval (0; ��);
'0(�) is negative and, on the interval (��; 1); '0(�) is positive, i.e., ' is �rst decreasing from
'(0) = 0 to '(��) < 0 and then increasing from '(��) < 0 to '(1) = 1:

8For mechanisms with nonrandom admission rules, these results had already been
established in Hellwig (2005). Propositions 4.1 and 4.2 show that the conclusions remain
valid if one allows for random as well as nonrandom admission rule.
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small it may be, it is always desirable to have at least some distortionary
taxation as a basis for redistribution; see, e.g., Mirrlees (1971), Hellwig
(2007 b). Here, it is desirable to keep admissions completely open, i.e., to
avoid any distortion if inequality aversion is uniformly small. The di¤er-
ence is due to the fact that, with nonrivalry in consumption, there is no
cost to admitting an additional person to the enjoyment of the public good.
If there was a variable cost

R
�(�)f(�)d�; with  > 0; of public-good en-

joyment, this variable cost would have to be represented by an additional
term ���(�)f(�) in the Hamiltonian (3.14). The expression g(�); which
drives the choice of the admission probability �(�); would then take the form
g(�) = �(��)f(�)+'(�); which is strictly negative for all � � ; and even
for � slightly above : The admission probability must then be zero for all
� � ; and even for � slightly above : The allocative e¤ect of a change in
�(�) is represented by the term �(� � )f(�); the distributive e¤ect again
by '(�): Both e¤ects call for the exclusion of people with � < : For people
with � > ; the allocative e¤ect calls for admission, the distributive e¤ect
for exclusion; with '() < 0; the distributive e¤ect prevails if � >  is suf-
�ciently close to ; and the allocative e¤ect is small: With a population of
mass F (�) > 0 as net bene�ciaries, for � close to ; the distributive e¤ect
is commensurate to the change in �(�) and dominates the allocative e¤ect.
The optimal admission rule then involves some distortion even though the
degree of inequality aversion may be very small. By contrast, in the absence
of variable costs of people enjoying the public good, i.e., with  = 0; the
distributive e¤ect, as well as the allocative e¤ect, of keeping out people with
� slightly above  is negligible. Which of the two e¤ects dominates, depends
on second-order considerations; these considerations in turn depend on the
degree of inequality aversion.

At the other end of the spectrum, if inequality aversion is very large,
it is desirable to provide the public good on terms similar to those of a
pro�t-maximizing monopolist. Optimal utilitarian mechanisms converge to
the optimal Rawlsian mechanism, which maximizes the payo¤ v(0) of people
with � = 0; who are worst o¤. The Rawlsian mechanism manages the public
good as a pro�t-maximizing monopolist would, charging the monopoly price
pM in order to raise v(0) to level Y � �K + pM (1 � F (pM )); the maximum
that is at all feasible.

For an intermediate degree of inequality aversion, the optimal admission
rule will lie between the open admissions of Proposition 4.1 and the Rawlsian
admission rule. It is always desirable to be less restrictive than a pro�t-
maximizing monopolist.
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Proposition 4.3 Regardless of �W (�); the solution to the reduced utilitarian
problem satis�es �(�) = 1 for all � > pM :9

Propositions 4.1, 4.2, and 4.3 suggest that the optimal admission rule
becomes more restrictive as the mechanism designer�s inequalilty aversion
goes up. For optimal mechanisms with nonrandom admission rules, this
comparative-statics property is actually implied by Proposition 4.3 in Hell-
wig (2005). For the general case, allowing for randomized admissions, I do
not have a proof, but can only formulate a conjecture.10

Conjecture 4.4 Let W1;W2 be two welfare functions such that �W1
(v) <

�W2
(v) for all v; and let (v1(�); �1(�)); (v2(�); �2(�)) be the solutions to the

associated reduced utilitarian problems. Then v1(0) � v2(0) and �1(�) �
�2(�) for all �: Indeed, v1(0) < v2(0) and �1(�) > �2(�) for some � unless
v2(0) = Y � �K and �2(�) = 1 for all �:

5 On the Desirability of Randomized Admissions

Turning to a more detailed analysis of the optimality conditions in Proposi-
tion 3.5, in this section, I discuss the desirability of having �(�) lie strictly
between zero and one for a nonnegligible set of ��s. The following proposi-
tion shows that it is not always desirable to simply charge a single admission
fee and to admit people if and only if they pay the fee. For the given model
speci�cation, instead, the optimal admission rule involves randomized ad-
missions.

Proposition 5.1 Assume that the welfare functionW and the density func-
tion f are given as W (v) = �1

�e
��v; where � > 0; and f(�) = Ae�B�; where

B > 0 and A = B=(1 � e�B): Then there exists a continuous function
9Strictly speaking, the proposition only shows that it is never desirable to be more

restrictive than a pro�t-maximizing monopolist. However, using the �rst-order condition
for the monopoly price pM , one can show that, if the threshold for � = 1 is shifted
downwards from pM to a point p just below pM ; the loss in admission fees revenues is
small relative to the gain in information rents for people with � > pM : I am not stating
this formally because, in the absence of any information, apart from monotonicity, about
the structure of �(�); the formal argument takes too much space. For the relaxed utilitarian
problem, the claim is obvious from (4.2) showing that g(pM ) > 0:
10 It is unsatisfactory to give a conjecture, rather than a theorem. In the theory of

optimal nonlinear income taxation, however, we do not even have a conjecture as to what
the appropriate analogue of Roberts�s (1977) comparative-statics result for linear income
taxation would be.
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�! �̂(�), taking values in the interval [0; pM ); such that, for any � > 0; the
solution to the reduced utilitarian problem for the welfare function W with
inequality aversion � satis�es

�(�) =
B

�(2�B�) 2 (0; 1) if � 2 (0; �̂(�)); (5.1)

and
�(�) = 1 if � 2 (�̂(�); 1]: (5.2)

Moreover, �̂(�) is strictly positive and increasing in � if

1

2

1� e�B
B

>
1� e�(�+B)
�+B

; (5.3)

�̂(�) = 0 if (5.3) fails to hold.

For the case where the inequality aversion parameter � is large enough
to satisfy the inequality (5.3), the optimal admission rule (5.1), (5.2) is
illustrated in Figure 1. In this case, the optimal admission probability �(�)
is everywhere strictly positive. However, up to some critical value �̂(�);
the optimal admission probability lies strictly between zero and one. Below
�̂(�); �(�) is strictly increasing in �; at �̂(�); there is an upward jump from

B
�(2�B�̂(�)) to one.

Why should the admission rule �(�) take such a form? To answer this
question, I note that the feasibility constraint (3.7) can be restated in
terms of only the indirect utility function v(�): For this purpose, the termR 1
0 ��(�)f(�)d� in (3.7) is integrated by parts; with an appeal to the in-

centive compatibility condition (3.8), the terms
R �
0 �(�)d� that appear are

replaced by v(�)� v(0): This yieldsZ 1

0
��(�)f(�)d� =

�
�f(�)

Z �

0
�(�)d�

�1
0

�
Z 1

0
(f(�) + �f 0(�))

Z �

0
�(�)d� d�

= (v(1)� v(0))f(1)�
Z 1

0
(f(�) + �f 0(�))v(�)d� + v(0)f(1):

(5.4)

Given (5.4), the feasibility constraint (3.7) can be rewritten asZ 1

0
v(�)[2f(�) + �f 0(�)]d� � v(1)f(1) � Y � �K: (5.5)
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Figure 1: Randomized Admissions
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The reduced utilitarian problem is thus equivalent to the problem of choos-
ing v(�) to maximize (3.6) subject to (5.5) and subject to the requirement
that v(�) be nondecreasing, convex and Lipschitz continuous with Lipschitz
constant one.11

If one neglects the monotonicity, convexity, and Lipschitz continuity con-
ditions on v(�) and just maximizes pointwise with respect to v(�) for any �;
one obtains the �rst-order condition

W 0(v(�))f(�)� �[2f(�) + �f 0(�)] = 0; (5.6)

where � is again the Lagrange multiplier of the feasibility constraint. If the
function v(�) that results from solving (5.6) for all � happened to satisfy the
requisite monotonicity, convexity, and Lipschitz continuity conditions, this
function would actually be the solution to the reduced utilitarian problem.
Of course, we know that, at least for � � pM , the Lipschitz condition on
v(�) must be strictly binding. However, if, locally, over some interval, the
maximization condition (5.6) is compatible with the other constraints on
v(�), then, over this interval, the solution to the reduced utilitarian problem
must satisfy (5.6).

For the given welfare function W and density function f; (5.6) can be
rewritten as

e��v(�) = �(2�B�); (5.7)

which yields

v(�) = �1
�
ln�� 1

�
ln(2�B�) (5.8)

and

v0(�) =
B

�(2�B�) : (5.9)

(5.1) then follows from the incentive compatibility condition (3.8).
The rationale for randomized admissions here is di¤erent from the ratio-

nale for randomization that Stiglitz (1982) and Brito et al. (1995) give in
the context of optimal income taxation. In that context, randomization is
useful if it provides an incentive device to screen agents according to their
earning abilities. This is only the case if agents with higher earning abilities
exhibit greater risk aversion (Hellwig 2007 a). Here, the desirability of ran-
domization has nothing to do with attitudes towards risk. It simply comes
from the fact that the factors determining the choice of v(�) for di¤erent

11Monotonicity, convexity and the Lipschitz property ensure that the slope v0(�) is non-
decreasing and takes values in the unity interval.
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� may generate an indirect utility function with a slope v0 that happens to
lie strictly between zero and one. Its occurrence has more to do with the
behaviour of the density function f than with the behaviour of the welfare
function W: Most importantly, the elasticity �f 0(�)

f(�) = �B� of the density
function in Proposition 5.1 is decreasing in �:

This monotonicity property of the elasticity �f 0(�)
f(�) is actually necessary if

the optimal admission rule is to involve some nondegenerate randomization.
To see this, observe that, if �(�) 2 (0; 1) over some interval, then one must
have g(�) = 0 on this interval. Hence also g0(�) = 0 on this interval, which
is just (5.6). If �(�) > 0; then, by the incentive compatibility condition
v0(�) = �(�); v(�) is strictly increasing and, by the strict concavity of W;
W 0(v(�)) is strictly decreasing in �: To balance the e¤ect of W 0(v(�)) being
strictly decreasing, the elasticity �f 0(�)

f(�) must be decreasing in � over this

interval. Conversely, if the elasticity �f 0(�)
f(�) is nondecreasing in �; then, quite

generally, the optimal admission rule cannot involve any randomization.
Thus, one obtains:

Proposition 5.2 If the elasticity �f 0(�)
f(�) is nondecreasing in �, there exists

�̂ 2 [0; pM ) such that the solution to the reduced utilitarian allocation problem
satis�es

�(�) = 0 if � 2 [0; �̂); (5.10)

and
�(�) = 1 if � 2 [�̂; 1]: (5.11)

Morever, �̂ > 0 if and only if

W 0(Y � �K) > 2

Z 1

0
W 0(Y � �K + �) f(�) d� : (5.12)

As mentioned in the introduction, Manelli and Vincent (2006) use a sim-
ilar monotonicity condition to ensure that a pro�t-maximizing monopolist
does not want to use randomization in selling two goods to consumers with
additively separable preferences. In their paper, the preference parameters
�1; �2 for the di¤erent goods are assumed to be mutually independent, and
the elasticity �if

0
i(�i)

fi(�i)
of the density function of �i is assumed to be nonde-

creasing for each i:
I conclude this discussion with two remarks on the relation of Proposi-

tions 5.1 and 5.2 to the discussion in Section 4. First, the two propositions
give the same necessary and su¢ cient condition for not having completely
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open admissions: Condition (5.12) in Proposition 5.2 specializes to (5.3)
when W 0(�) and f(�) take the form speci�ed in Proposition 5.1. To under-
stand this condition, recall the optimality condition (3.17) for the choice of
�(�). For open admissions, i.e., �(�) = 1 for all � 2 (0; 1]; to be optimal, one
must have g(�) = ��f(�) + '(�) � 0 for all �; where � and '(�) are given
by (3.19) and (3.18). By (3.19) and (3.18), one always has g(0) = 0 and

g0(0) = (2��W 0(v(0)))f(0): (5.13)

If g(�) is to be nonnegative for � close to zero; one must therefore have

2� �W 0(v(0)): (5.14)

Under open admissions, v(�) = Y � �K + � for all �; so, by (3.19), (5.14)
takes the form Z 1

0
W 0(Y � �K + �) f(�) d� �W 0(Y � �K); (5.15)

which is the negation of (5.12). Conversely, (5.12) implies that there is a
preference to restrict admissions for � close to zero. Thus, (5.15) is necessary
for open admissions to be optimal. Under the additional assumptions of
Propositions 5.1 and 5.2, this condition is also su¢ cient for the optimality
of open admissions.

Second, Conjecture 4.4 is true in the settings of Proposition 5.1 as well
as Proposition 5.2. In both settings, optimal admission rules become more
restrictive if inequality aversion goes up. For Proposition 5.2, where opti-
mal admission rules do not involve randomization, this claim follows from
Proposition 4.3 in Hellwig (2005). For Proposition 5.1, the claim follows
from the fact that the threshold �̂(�) is increasing in �; i.e., the interval
with �(�) < 1 becomes larger as � goes up, and, moreover, by (5.1), for any
� < �̂(�); the admission probability �(�) is decreasing in �:

6 The Model with Participation Constraints

This last part of the paper shows that, apart from some obvious changes, the
preceding analysis is robust to the imposition of participation constraints.
This is true, in particular, of the �ndings that randomization may be desir-
able if the elasticity �f 0(�)

f(�) is decreasing, and is never desirable if the elasticity
�f 0(�)
f(�) is increasing in �:
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Because, by incentive compatibility, the indirect utility function is non-
decreasing in �; the participation constraint (2.7) can be reduced to the
inequality

v(0) � Y: (6.1)

The imposition of this constraint, in addition to feasiblity and incentive
compatibility, obviously has no e¤ect on the validity of Lemmas 3.1 and 3.2
and of Proposition 3.3.

The reduced utilitarian problem with participation constraints then is to
choose an indirect utility function v(�) and a nondecreasing function �(�)
so as to maximize (3.6) subject to (6.1), (3.12), and to (3.13) holding for
almost all �: The relaxed utilitarian problem with participation constraints
is the problem of maximizing (3.6) subject only to (6.1), (3.12), (3.13),
without the monotonicity condition on �(�): Except for the transversality
condition for v(0); the characterization given in Proposition 3.5 remains
valid for the relaxed utiliatrian problem with participation constraints. The
transversality condition '(0) = 0 in Proposition 3.5 is replaced by the new
transversality condition

'(0) � 0 and '(0)(v(0)� Y ) = 0: (6.2)

Because of this change, the Lagrange multiplier for the feasibility constraint
is no longer given by (3.19). With ' again satisfying the di¤erential equa-
tion (3.16) and the boundary condition '(1) = 0; (6.2) is equivalent to the
requirement that

� �
Z 1

0
W 0(v(�))f(�)d�; (6.3)

with equality if v(0) > Y:
If one combines the participation constraint (6.1) with the feasibility

constraint (3.10), one obtains the inequality

�K �
Z 1

0
��(�)dF (�)�

Z 1

0

Z �

0
�(�)d�dF (�); (6.4)

requiring that the cost of public-good provision be covered by the share of
the bene�ts from the public good that is appropriated by the mechanism
designer. The participation constraint v(0) � Y eliminates the possibility
of �nancing the public good by a lump sum tax. As discussed by Schmitz
(1997) and Norman (2004), the requisite revenue must come from admission
fees.

Condition (6.4) is obviously incompatible with the open-admissions rule
of Proposition 4.1. For low levels of inequality aversion, the open-admissions
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rule is therefore replaced with a rule stipulating an admission fee at which
revenues just cover the cost of public-good provision. Assumption A.I guar-
antees that such a fee exists and that it is smaller than pM . In deference to
Dupuit (1844), I will refer to this fee as the Dupuit fee and the associated
admission rule as the Dupuit admission rule. Formally, the Dupuit fee is
given as the smallest solution to the equation12

��(1� F (��)) = �K: (6.5)

The following result provides the analogue of Proposition 4.1 for the
utilitarian problem with participation constraints.

Proposition 6.1 Assume that the map � ! �f(�)
1�F (�) is increasing, with a

derivative that is bounded away from zero on (0; 1): Then, there exists A > 0
such that, if �W (v) � A for all v; the solution to the reduced utilitarian
problem with participation constraints is given by the Dupuit admission rule,
with v satisfying v(�) = Y +max(0; � � ��) for all �:

The requirement that the ratio �f(�)
1�F (�) be increasing in � is the condition

that Schmitz (1997) and Norman (2004) impose to obtain the optimality of
the Dupuit admission rule in the absence of inequality aversion. By com-
parison to their papers, the assumption that the derivative of this ratio be
bounded away from zero provides for a slight strengthening of this require-
ment. The purpose of this strengthening is to avoid the possibility that the
derivative of �f(�)

1�F (�) with respect to � is equal to zero precisely at the Dupuit

fee ��, in which case the tradeo¤ between the allocative and distributive ef-
fects of an increase in the admission fee above �� is di¢ cult to disentangle
even though inequality aversion is small.

At the other end of the spectrum, when inequality aversion is large,
Proposition 4.2 implies that the inequality (6.1) is automatically satis�ed,
even when it is not imposed as a constraint. In the case, the participation
constraint is not binding, and the results of the preceding analysis carry
over without change. In particular, one obtains the following analogue of
Proposition 5.1:

Proposition 6.2 Assume that the welfare functionW and the density func-
tion f are given as W (v) = �1

�e
��v; where � > 0; and f(�) = Ae�B�; where

B > 0 and A = B=(1�e�B): Then there exist continuous functions �! ��(�)

12For an admission rule characterized by an admission fee, the right-hand side of (6.4)
takes the form

R 1
��
�dF (�)�

R 1
0
max(� � ��; 0)dF (�) = ��(1� F (��):
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and �! ��(�) � ��(�) that take values in the interval [0; pM ); such that, for
any � > 0; the solution to the reduced utilitarian problem with participation
constraints for the welfare function W with inequality aversion � satis�es

�(�) = 0 if � 2 [0; ��(�)) (6.6)

�(�) =
B

�(2�B�) 2 (0; 1) if � 2 (�
�(�); ��(�)); (6.7)

and
�(�) = 1 if � 2 (��(�); 1]: (6.8)

Moreover, for any �; ��(�) is the larger of the Dupuit admission fee �� and the
critical �̂(�) in Proposition 5.1. ��(�) is nonincreasing in �; with ��(�) =
��(�) if ��(�) = �� and ��(�) = 0 if the solution to the reduced utilitarian
problem in Proposition 5.1 satis�es (6.1) automatically. In the intermediate
case, if ��(�) > �� and the participation constraint (6.1) is strictly binding,
��(�) lies strictly between zero and ��(�):

Figure 2 illustrates the optimal admission rule of Proposition 6.2 for the
intermediate case where � is both, high enough so that the critical �̂(�) in
Proposition 5.1 exceeds the Dupuit admission fee ��; and low enough so that
the participation constraint (6.1) is strictly binding. In this case, the ad-
mission rule is characterized by two thresholds ��(�) and ��(�). Below ��(�);
the lower threshold, admission probabilities are zero. Above ��(�); admis-
sion probabilities are the same as in the absence of participation constraints,
taking the values B

�(2�B�) between �
�(�) and ��(�) and the value one above

��(�); the upper threshold is the same as the threshold �̂(�) in Proposition
5.1. Thus, in particular, this threshold is independent of �K:

The lower threshold ��(�) is determined so that admission fee revenues
cover the cost of public-good provision. By fully excluding people with
� < ��(�); the mechanism designer obtains a greater share of the bene�ts
enjoyed by people with � > ��(�): This is necessary if � is low enough so that
the participation constraint (6.1) is strictly binding. However, if �̂(�) > ��;
there is no need to push ��(�) all the way up to ��(�)) = �̂(�): In this
case, there is still a nondegenerate interval (��(�); ��(�)) in which optimal
admission probabilities lie strictly between zero and one.

To conclude this section, I note that, by the same arguments as before,
with participation constraints as well as without, randomization in admis-
sions is not optimal if the elasticity �f 0(�)

f(�) is nondecreasing in �: Formally,
one obtains:
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Figure 2: Randomized Admissions with Participation Constraints
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Proposition 6.3 If the elasticity �f 0(�)
f(�) is nondecreasing in �, there exists

�̂
� 2 [0; pM ) such that the solution to the reduced utilitarian allocation prob-
lem with participation constraints satis�es

�(�) = 0 if � 2 [0; �̂�); (6.9)

and
�(�) = 1 if � 2 [�̂�; 1]: (6.10)

Moreover, �̂
�
is the larger of the Dupuit admission fee �� and the critical �̂

in Proposition 5.2.

7 Risk Aversion

Two referees have suggested that, in the present context, the assumption of
risk neutrality consumers is problematic - not just because risk neutrality is
special, but because the analysis is concerned with risk randomization and
risk. The treatment of incomplete information rests on a model involving
prior uncertainty about each individual�s preference parameter �: From an
ex ante point of view, the assessment of a given allocation by a consumer
is likely to depend on his risk attitudes. Therefore it is important that
the conclusions of the analysis should be robust to the introduction of risk
aversion.

Risk aversion of consumers a¤ects the utilitarian allocation problem in
two ways. First, it introduces an additional element of inequality aversion.
Even if the welfare function W (�) were linear, equity considerations might
play a role as way of reducing the consequences of ex ante uncertainty about
preferences. Second, risk aversion of consumers a¤ects the incidence of in-
centive constraints. If people with high � are less willing to accept a given
risk in private-good consumption than people with low �; it may be desirable
to have some randomization over the private-good consumption of people
with low � in order to alleviate incentive constraints for people with high �.
This corresponds to the suggestion of Stiglitz (1982) and Brito et al. (1995)
that randomization in income taxation may be useful as way of alleviating
incentive constraints for high-productivity people.

Since this is hardly the point to begin a new paper, I only make a few
remarks on the implications of allowing for risk aversion of consumers. If
risk aversion is uncorrelated with the hidden characteristic, there is no point
in using such randomization as an incentive device. For example, if the von
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Neumann-Morgenstern utility function takes the form

u(c(�; i) + �(�; i)�Q) � �1
�
e��(c(�;i)+�(�;i)�Q) (7.1)

for some � > 0; attitudes towards risks in private-good consumption are
independent of �: In this case, randomization in private-good consumption,
conditional on � and on the public-good admission decision, can only reduce
expected payo¤s without alleviating incentive constraints.13 Attention can
therefore be restricted to allocations with private-good consumption taking
the form

c(�; i) = c0(�) if �(�; i) = 0 and c(�; i) = c1(�) if �(�; i) = 1: (7.2)

In the absence of participation constraints, the utilitarian mechanism de-
sign problem then is to choose functions c0(�); c1(�); �(�); as well as a public-
good provision level Q; so as to maximize the welfare functional14Z 1

0

�
�(�)W (�1

�
e��(c1(�)+�Q)) + (1� �(�))W (�1

�
e��c0(�))

�
f(�)d� (7.3)

under the feasibility constraintZ 1

0
[�(�)c1(�) + (1� �(�))c0(�)] f(�)d� � Y �K(Q) (7.4)

and the incentive compatibility condition that

v(�) � �1
�
�(�0) e��(c1(�

0)+�Q) � 1
�
(1� �(�0)) e��c0(�0)

for all � and �0 where

v(�) = �1
�
�(�) e��(c1(�)+�Q) � 1

�
(1� �(�)) e��c0(�): (7.5)

As before, for any �; �(�) :=
R
�(�; i)d�(i):

Using the arguments of Mirrlees (1976), one can show that the �rst-order
and second-order necessary conditions for incentive compatibility are jointly

13As in Hellwig (2007 a), this conclusion can also be obtained if participants exhibit
non-increasing, rather than constant absolute risk aversion.
14This welfare speci�cation is based on a strictly consequentialist approach. An alter-

native approach would specify welfare as a function of participants�payo¤ expectations
rather than payo¤ realizations. The analysis would hardly be changed.
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su¢ cient, as well as necessary, for incentive compatibility. The �rst-order
condition requires that

v0(�) = Q�(�) e��(c1(�)+�Q) (7.6)

for all �; the second-order condition requires that the function � ! Q�(�) e��c1(�)

be nondecreasing. The utilitarian mechanism design problem then is to
chooseQ, c0(�); c1(�); �(�) and the expected-payo¤function v(�) so as to maxi-
mize (7.3) subject to (7.4), (7.5), (7.6), and the requirement thatQ�(�) e��c1(�)

be nondecreasing in �: The corresponding relaxed utilitarian problem is to
maximize (7.3) subject to (7.4), (7.5), (7.6), without the monotonicity re-
quirement on Q�(�) e��c1(�):

This relaxed utilitarian problem can again be analysed by control theo-
retic methods. This yields the following:

� In contrast to Lemma 3.1, it is undesirable to set c1(�) = c0(�)��. The
reason is the appearance of c1(�) in the incentive constraint (7.6), for
which there is analogue in the case of risk neutrality. If the curvature
�W (v(�)) of the welfare function is everywhere equal to zero, i.e., if
there is no inequality aversion, it is actually desirable to set c1(�) =
c0(�). If there is inequality aversion as well as risk aversion, it is
desirable to have c0(�)� � < c1(�) < c0(�):

� The results of Section 4 go through unchanged, except that, in these
results, the curvature of W must be replaced by the curvature

�V (c) = �W (u(c)) + �u(c)

of the composition V = W � u. The consumers�risk aversion �u(c) =
� is simply added to the inequality aversion inherent in the welfare
function W .

� If the risk aversion coe¢ cient � is close to zero, optimal admission
rules must be close to the (unique) optimal admission rule in the case
of risk neutrality. For the welfare and density functions speci�ed in
Proposition 5.1, there must therefore be randomization in admissions if
the parameters � and B satisfy the inequality (5.3) and � is su¢ ciently
small. Whether randomized can be desirable for arbitrary �; regardless
of what the curvature ofW might be is at this point an open question.
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A Appendix: Proofs

Lemmas 3.1 and 3.2 follow directly from the arguments given in the text.
Proposition 3.3 is proved in the supplementary material to the online

version of this paper, see also Appendix A.1 to Hellwig (2009).
As for Proposition 3.5, the "only if" part of this proposition follows from

Clarke�s (1983) version of the Maximum Principle, the "if" part from the
argument of Mangasarian (1966). The details are left to the reader.

Propositions 4.1 - 4.3 are proved in the supplementary material to the
online version of this paper, see also Appendix A.2 in Hellwig (2009) and
the proofs of the analogous results (Propositions 4.1, 4.2, and 3.3) in Hellwig
(2005).

Turning to the proof of Proposition 5.1, suppose that the welfare function
W and the density function f take the form assumed in this proposition,
i.e., W (vj�) = �1

�e
��v and f(�) = Ae�B� where A = B

1�e�B : The following
properties of the distribution function F and the density function f will be
repeatedly used.

� The revenue function

� ! �(1� F (�)) = �e
�B� � e�B
1� e�B (A.1)

has �rst derivative
e�B�(1�B�)� e�B

1� e�B (A.2)

and second derivative

�Be�B�(2�B�)
1� e�B (A.3)

� By (A.2) and (A.3), the revenue function is strictly quasi-concave.

� There a unique revenue-maximizing price pM : It satis�es

e�BpM (1�BpM )� e�B = 0: (A.4)

� For all � 2 [0; pM );

e�B�(1�B�)� e�B > 0: (A.5)

� For all � 2 [0; pM ];
2�B� > 0: (A.6)
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A central role in the analysis will be played by the function H(�) that is
de�ned by

H(�̂) :=

Z �̂

0
(2�B�)Ae�B�d� + (2�B�̂)e��̂

Z 1

�̂
Ae�(�+B)�d�: (A.7)

By integration, one can also write

H(�̂) =
A

B
(1� e�B�̂(1�B�̂)) + (2�B�̂)Ae�B�̂ 1� e

�(�+B)(1��̂)

�+B
; (A.8)

or, because A = B
1�e�B ;

H(�̂) = 1�A
B
(e�B�̂(1�B�̂)�e�B)+(2�B�̂)Ae�B�̂ 1� e

�(�+B)(1��̂)

�+B
: (A.9)

Finally, the �rst and second derivatives of H(�) are given as

H 0(�̂) = [�(2�B�̂)�B]e��̂
Z 1

�̂
Ae�(�+B)�d� (A.10)

and

H 00(�̂) = ��Be��̂
Z 1

�̂
Ae�(�+B)�d� +

"
�� Ae�(�+B)�̂R 1

�̂ Ae
�(�+B)�d�

#
H 0(�̂): (A.11)

With this preparation, I now turn to the proof of Proposition 5.1. The
following lemma speci�es the critical �̂(�).

Lemma A.1 For any � 2 R++; there exists �̂(�) 2 [0; pM ) such that

�̂ 2 (�̂(�); pM ] implies H(�̂) > 1 (A.12)

and
�̂ 2 [0; �̂(�)) implies H(�̂) < 1; (A.13)

�̂(�) > 0 if

1 > 2A
1� e�(�+B)
�+B

; (A.14)

and �̂(�) = 0 if

1 � 2A1� e
�(�+B)

�+B
; (A.15)

The map �! �̂(�) is nondecreasing on R+; it is strictly inreasing on the set
of � satisfying (A.13); lim�!1 �̂(�) = pM :
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Proof. By (A.11), H 0(��) = 0 implies that

H 0(�̂) T 0 as �̂ S �� (A.16)

Thus, H(�) is strictly quasi-concave.
From (A.4), (A.6), and (A.9), H(pM ) > 1: If H(0) � 1, then, because

H(�) is strictly quasi.concave, it follows that H(�̂) > 1 for all �̂ 2 (0; pM ]: In
this case, (A.12) and (A.13) are true for �̂(�) = 0: If H(0) < 1; then, by the
intermediate-value theorem, there exists �� 2 (0; pM ) such that H(��) = 1.
Moreover, because H(�) is strictly quasi.concave, one must have H(�̂) > 1
for �̂ 2 (��; pM ] and H(�̂) < 1 for �̂ 2 [0; ��): In this case, (A.12) and (A.13)
are true for �̂(�) = ��:

From (A.9), one has

H(0)� 1 = �1 + 2A1� e
�(�+B)

�+B
:

Thus, (A.14) implies H(0) < 1; and (A.15) implies H(0) � 1:
Because H(�) is increasing at �̂(�), strict monotonicity of �̂(�) on the

set of � satisfying (A.14) follows from the observation that, the right-hand
side of (A.9) is decreasing in �. Global weak monotonicity follows from the
observation that the ratio 1�e�(�+B)

�+B is decreasing in � so that (A.15) holds
if � is small and (A.14) holds if � is large.

The next lemma gives a condition under which it is optimal to set
�(�) = 1 above some threshold �̂ � �̂(�): The analysis turns on the op-
timality conditions of Proposition 3.5. For the given model speci�cation,
the expression g(�) in (4.2), which drives the choice of �(�); takes the form

g(�) =

Z 1

�
e��v(�)Ae�B�d� � �A

B
(e�B�(1�B�)� e�B): (A.17)

If �(�) = 1 above some threshold �̂; then, because v0(�) = �(�) for all �; one
has v(�) = v(�̂) + � � �̂ for all � > �̂; and (A.17) takes the form

g(�) = e��v(�̂)Ae�B�̂
1� e�(�+B)(1��̂)

�+B

��A
B
(e�B�(1�B�)� e�B): (A.18)
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Lemma A.2 Let v(�); �(�) be such that, for some �̂ 2 [�̂(�); pM ); �(�) = 1
for all � � �̂: If

e��v(�̂)Ae�B�̂
1� e�(�+B)(1��̂)

�+B
= �

A

B
(e�B�̂(1�B�̂)� e�B); (A.19)

then g(�) � 0 for all � 2 [�̂; 1]:

Proof. (A.19) implies g(�̂) = 0: I claim that, under the assumptions of the
lemma, one also has g0(�) � 0 at � = �̂: For � � �̂; (A.18) yields

g0(�) =
h
�(2�B�)� e��(v(�̂)+���̂)

i
Ae�B�: (A.20)

Because �̂ � �̂(�); Lemma A.1 implies that H(�̂) > 1: By (A.9), this implies.

(2�B�̂)Ae�B�̂ 1� e
�(�+B)(1��̂)

�+B
� A

B
(e�B�̂(1�B�̂)� e�B): (A.21)

Upon combining (A.21) with (A.19) and noting that, by (A.5), �̂ < pM
implies e�B�̂(1�B�̂)� e�B; one obtains

�(2�B�̂) � e��v(�̂): (A.22)

By (A.20), therefore, g0(�) � 0 at � = �̂:
Turning to the proof of the lemma itself, I proceed by contradiction. If

the lemma is false, there exists �� 2 (�̂; 1] such that g(��) < 0: Because g(�)
is continuous, there must exist �1 2 [�̂; ��) such that g(�1) = 0 and g(�) < 0
for all � 2 (�1; ��]: If �1 > �̂; then, because g(�̂) = g(�1) = 0 and g(�) < 0 for
� 2 (�1; ��]; there must exist �2 2 (�̂; �1] such that g(�) has a local maximum
at �2: Then

g0(�2) = 0 and g00(�2) � 0: (A.23)

If �1 = �̂; then, because g0(�̂) � 0 and g(�) < 0 for � 2 (�1; ��]; one must
have g0(�̂) = 0 and g00(�̂) � 0 so that, by setting �2 = �̂; one again obtains
(A.23).

By inspection of (A.18), one also has g(1) = �Ae�B > 0 = g(�1): Because
g(�) is decreasing at �1; it follows that there exists �3 2 (�1; 1) such that g(�)
has a minimum at �3: Then

g0(�3) = 0 and g00(�3) � 0 (A.24)

32



I claim that (A.23) and (A.24) imply �2 � �3: From (A.20), one computes

g00(�) = �Bg0(�)� [�B � �e��(v(�̂)+���̂)]Ae�B�: (A.25)

Thus, (A.23) and (A.24) imply

[�B � �e��(v(�̂)+�2��̂)] � [�B � �e��(v(�̂)+�3��̂)]; (A.26)

which implies �2 � �3: Yet, by construction, we should have �2 � �1 <
�3: The assumption that g(��) < 0 for some �� 2 (�̂; 1] has thus led to a
contradiction and must be false.

Proof of Proposition 5.1. I will show that, for �̂(�) given by Lemma A.1;
the admission rule (5.1), (5.2) and the associated indirect utility function
v(�) solve the relaxed utilitarian problem. Because the admission rule is
nondecreasing, it follows that �(�) and v(�) also solve the reduced utilitarian
problem. To prove that �(�) and v(�) solve the relaxed utilitarian problem,
I verify the conditions of Proposition 3.5.

If (5.3) holds, Lemma A.1 yields �̂(�) > 0: The argument in the proof
of Lemma A.1 also shows that H 0(�̂(�)) > 0: By (A.10), this implies [�(2�
B�̂(�))�B] > 0; hence

0 <
B

�(2�B�) < 1 (A.27)

for all � � �̂(�): (A.27) shows that (5.1) indeed de�nes an admission proba-
bility.

Given the admission rule (5.1), (5.2), calculation of the integral in (3.8),
with Q = 1; yields

v(�) = v(�̂(�))� 1
�
ln

2�B�
2�B�̂(�)

if � < �̂(�) (A.28)

and
v(�) = v(�̂(�)) + � � �̂(�) if � � �̂(�): (A.29)

The optimality conditions (3.18) and (3.19) are satis�ed by choosing �
and '(�) so that

'(�) =

Z 1

�
e��(v(�̂(�))+���̂(�))Ae�B�d� � �A

B
(e�B� � e�B) if � � �̂(�);

(A.30)
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'(�) =

Z �̂

�

2�B�
2�B�̂(�)

e��v(�̂(�))Ae�B�d� +

Z 1

�̂
e��(v(�̂(�))+���̂(�))Ae�B�d�

��A
B
(e�B� � e�B) if � < �̂(�); (A.31)

and

� =

"Z �̂(�)

0

2�B�
2�B�̂(�)

e��v(�̂(�))Ae�B�d� +

Z 1

�̂
e��(v(�̂(�))+���̂(�))Ae�B�d�

#
:

(A.32)
From (A.31) and (A.32), one obviously has g(0) = '(0) = 0: From (A.31),
one also obtains

g0(�) = �(f(�) + �f 0(�)) + '0(�);

= (2�B�)[�� 1

2�B�̂(�)
e��v(�̂(�))]Ae�B� (A.33)

for � < �̂(�): Because H(�̂(�)) = 1; (A.32) simpli�es to

� =
1

2�B�̂(�)
e��v(�̂(�)); (A.34)

so that (A.33) implies g0(�) = 0 for all � � �̂(�): Since g(0) = 0; it follows
that g(�) = 0 for all � � �̂(�): By Lemma A.2, moreover, g(�̂(�)) = 0 implies
that g(�) � 0 for all � � �̂(�): The optimality condition (3.17) is thus also
satis�ed for all �: This concludes the proof that, if (5.3) holds, then for
�̂(�) given by Lemma A.1, the admission rule (5.1), (5.2) provides a solution
to the relaxed utilitarian problem.

If (5.3) fails to hold, Lemma A.1 yields �̂(�) = 0: In this case, (5.2)
implies �(�) = 1 for all � 2 (0; 1]; and (4.2) takes the form (A.18) for all �:
If � is chosen to satisfy (3.19), i.e., if

� =

Z 1

0
e��(v(0)+�)Ae�B�d� = e��v(0)A

1� e�(�+B)
�+B

;

equation (A.19) is satis�ed for �̂ = 0: By Lemma A.2, one then has g(�) � 0
for all �; and the optimality condition (3.17) is satis�ed. Thus, if (5.3) fails
to hold, the admission rule (5.1), (5.2) with �̂(�) = 0 provides a solution to
the relaxed utilitarian problem.

Proof of Proposition 5.2. I will �rst show that the solution to the relaxed
utilitarian problem must satisfy (5.10) and (5.11) for an appropriate choice
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of �̂: Because this result also implies that the admission rule �(�) is nonde-
creasing, the solution to the reduced utililtarian problem coincides with the
solution to the relaxed utilitarian problem and therefore also satis�es (5.10)
and (5.11) for an appropriate �̂:

Suppose that �(�) and v(�) solve the relaxed utilitarian problem. By
Proposition 3.5, there exist � > 0 and '(�) such that conditions (3.15) -
(3.17) hold. As before, � and '(�) are determined by (3.15) and (3.16), or,
equivalently, (3.19) and (3.18), so that the key to the analysis is provided
by condition (3.17). The maximization in (3.17) is driven by the expression
g(�) = ��f(�) + '(�): Taking derivatives and using (3.16), one obtains

g0(�) = �(f(�) + �f 0(�)) + '0(�)

=

�
�(2 +

�f 0(�)

f(�)
)�W 0(v(�))

�
f(�): (A.35)

Because v(�) is nondecreasing andW is strictly concave, the term�W 0(v(�))

is nondecreasing in �. Because the elasticity �f 0(�)
f(�) is also nondecreasing, it

follows that the term in square brackets is nondecreasing in �: Thus, if
g0(�) > 0 for some �; one infers that g0(�0) > 0 for all �0 > �:

The term in brackets is actually strictly increasing at any � at which v(�)
is strictly increasing, i.e., at any � with �(�) > 0: Thus, if g0(�) = 0 for some
�; then, for �0 > �; one infers that g0(�0) � 0; and that g0(�0) = 0 only if
�(�00) = g0(�00) = 0 for all �00 2 (�; �0):

These observations imply that, if g0(0) > 0; then one has g0(�) > 0 for all
�: This implies that g(�) > g(0) = 0 for all � > 0: The optimality condition
(3.17) then requires that �(�) = 1 for all � 2 (0; 1]: The admission rule
satis�es (5.10) and (5.11) with �̂ = 0:

Alternatively, if g0(0) = 0; one may let �� = supf�jg0(�) = 0g: If �� = 0;
the same argument as before requires that g(�) > g(0) = 0 and therefore
�(�) = 1 for all � 2 (0; 1]: If �� > 0; one must have �(�) = 0 and g0(�) = 0
for all � 2 (0; ��): It follows that g(��) = g(0) = 0: Moreover, by the same
argument as before, g(�) > g(��) = 0 and therefore �(�) = 1 for all � 2 (��; 1]:
In either case, if �� = 0 and if �� > 0; the admission rule satis�es (5.10) and
(5.11) with �̂ = ��:

Finally, if g0(0) < 0; the function g(�) achieves a minimum at some
�� > 0: Since g(0) = 0; one has g(��) < 0; as well as g0(��) = 0: Since g(1) =
�f(1) > 0; one has �� < 1: Between � = �� and � = 1; g(�) rises monotonically
from g(��) to g(1): There is then a unique �̂ 2 (��; 1) so that g(�̂) = 0; and
g(�) < 0 for � 2 (0; �̂); g(�) > 0 for � 2 (�̂; 1]. In this case, (3.17) requires
that �(�) = 0 for � 2 (0; �̂) and �(�) = 1 for � 2 (�̂; 1]. The admission rule
satis�es (5.10) and (5.11) for this critical �̂:
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Proposition 4.3 also implies �̂ � pM : By (4.2), moreover, g(�̂) = 0 implies
�̂f(�̂) < 1� F (�̂); so that one must have �̂ 6= pM ; and hence �̂ < pM :

The preceding arguments have shown that �̂ = 0 if g0(�) > 0 for �
arbitrarily close to zero and �̂ > 0 if g0(�) � 0 for � arbitrarily close to zer0:
Thus �̂ > 0 implies g0(0) � 0: By (A.35) and (3.19), one must then have

W 0(v(0)) � 2� = 2
Z 1

0
W 0(v(�)) f(�) d�: (A.36)

Since v(�) = v(0) + max(� � �̂; 0) < v(0) + � for all � and W is strictly
concave, (5.12) follows.

Similarly, �̂ = 0 implies g0(0) � 0: By (A.35) and (3.19), one must then
have

W 0(v(0)) � 2� = 2
Z 1

0
W 0(v(�)) f(�) d�: (A.37)

Since �̂ = 0 implies v(�) = v(0) + � for all �; (A.37) implies that (5.12) is
violated. Conversely, (5.12) implies that �̂ > 0:

Proof of Proposition 6.1. I will show that the Dupuit admission rule
and the indirect utility function that the Dupuit admission rule induces solve
the relaxed utilitarian problem with participation constraints if inequality
aversion is su¢ ciently small. For this purpose, I verify the optimality con-
ditions of Proposition 3.5, with '(0) = 0 in (3.15) replaced by the new
transversality condition '(0) � 0:

If � is speci�ed so that g(��) = 0; i.e., if

� =

R 1
�� W

0(Y + � � ��)f(�)d�
1� F (��)� ��f(��)

; (A.38)

and '(�) is given by (3.18), then the transversality condition '(1) = 0 and
(3.16) hold automatically. As in the proof of Proposition 4.1, �W (v) � A
for all v implies

W 0(Y + �) �W 0(Y )e�A� (A.39)

for all �: By (A.38), therefore,

� �
R 1
�� W

0(Y )e�Af(�)d�

1� F (��)� ��f(��)
� e�A 1� F (��)

1� F (��)� ��f(��)
W 0(Y ): (A.40)

If A is su¢ ciently close to zero so that

e�A
1� F (��)

1� F (��)� ��f(��)
> 1;
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the right-hand side of (A.40) is greater that W 0(Y ): By the concavity of W;
W 0(Y ) in turn is greater than

R 1
0 W

0(Y + max(� � ��; 0))f(�)d�: By (3.18),
one then has '(0) < 0; and the transversality condition for v(0) is satis�ed.

To complete the proof of the proposition, I verify that

g(�) S 0 as � S �� (A.41)

so that the optimality condition (3.17) is also satis�ed. By inspection of
(4.2), (A.41) is equivalent to the requirement that, for �R 1

� W
0(Y +max(� � ��; 0))f(�)d�

1� F (�) � �1� F (�)� �f(�)
1� F (�) S as � S ��:

(A.42)
To prove (A.42), I �rst note that, by the de�nition of �; the two sides

of (A.42) are equal if � = ��: I also observe that, for � = pM ; one has
1 � F (�) � �f(�) = 0: By the assumption that �f(�)

1�F (�) is increasing in �, it
follows that, for all � � pM ; 1� F (�)� �f(�) � 0 so that the left-hand side
of (A.42) is positive, as required by (A.42).

To complete the proof of (A.42), I show that the derivative of the left-
hand side of (A.42) with respect to � is positive for all � < pM ; if inequality
aversion is su¢ ciently small. The derivative of the second term on the left-
hand side is bounded below by �B; where B > 0 is the given lower bound
on d

d�
�f(�)
1�F (�) : As for the �rst term, one computes

d

d�

R 1
� W

0(Y +max(� � ��; 0))f(�)d�
1� F (�)

=
f(�)

1� F (�)

"R 1
� W

0(Y +max(� � ��; 0))f(�)d�
1� F (�) �W 0(Y +max(� � ��; 0))

#

� f(�)

1� F (�)
�
W 0(Y + 1)�W 0(Y )

�
� f(�)

1� F (�)W
0(Y )(e�A � 1);

where A is again the upper bound on the inequality aversion �W (v): If A is
su¢ ciently close to zero, one obviously has

f(�)

1� F (�)W
0(Y )(e�A � 1) + �B > 0

for all � < pM ; so that the left-hand side of (A.42) is indeed increasing in � on
the interval [0; pM ): The validity of (A.42) and (A.41) follows immediately.
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Proof of Proposition 6.2. The threshold �̂(�) is again given by Lemma
A.1. There are two cases to be considered:

Case 1: �̂(�) � ��: I claim that, in this case, the Dupuit admission rule
solves the relaxed utilitarian problem with participation constraints. To
prove this claim, I show that this rule satis�es the optimality conditions of
the relaxed utilitarian problem with participation constraints. For � � ��;
under the Dupuit admission rule, g(�) is given by (A.18). If � is such that
g(��) = 0; then, by Lemma A.2, one has g(�) � 0 for all � 2 [��; 1]: The
optimality condition (3.17) is thus satis�ed for � � ��:

For � < ��; under the Dupuit rule, (3.18) yields

'(�) =

Z ��

�
e��YAe�B�d� +

Z 1

�̂
e��(Y+��

��)Ae�B�d� � �A
B
(e�B� � e�B);

hence

g0(�) = �(1�B�)Ae�B� + '0(�)
=

�
�(2�B�)� e��Y

�
Ae�B�: (A.43)

I claim that
�(2�B�) � e��Y ; (A.44)

hence g0(�) � 0 for all � � ��: Because g(��) = 0; this implies g(�) � 0 for all
� � ��; so that the optimality condition (3.17) is satis�ed for � � �� as well
as � � ��: Since g(0) = '(0); the transversality condition for v(0) is then
satis�ed as well.

To prove (A.44), I note that, by Lemma A.1, �� � �̂(�) implies H(��) � 1:
By (A.9), it follows that

(2�B��)Ae�B�� 1� e
�(�+B)(1���)

�+B
� A

B

h
e�B

��(1�B��)� e�B
i
: (A.45)

Because � has been chosen so that g(��) = ���Ae�B��+'(��) = 0; one also has

e��YAe�B
�� 1� e�(�+B)(1�

��)

�+B
= �

A

B

h
e�B

��(1�B��)� e�B
i
: (A.46)

Upon combining (A.45) and (A.46), one �nds that �(2�B��) � e��Y : There-
fore, (A.44) must hold for all � � ��: The Dupuit admission rule thus satis�es
the optimality conditions of the relaxed utilitarian problem with participa-
tion constraints.
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Case 2: �̂(�) > ��: If � is large enough so that the solution to the reduced
utilitarian problem without participation constraints satis�es the participa-
tion constraint (6.1) anyway, the claims of the proposition for this case follow
directly from Proposition 5.1. Suppose, therefore, that the solution to the
reduced utilitarian problem without participation constraints violates (6.1).
The participation constraint must then be binding in the reduced utilitarian
problem with participation constraints, i.e., one must have v(0) = Y; and
the feasibility constraint is equivalent to (6.4). It is convenient to rewrite
this in the form

�K �
Z 1

0
�(�)(�f(�)� (1� F (�)))d�; (A.47)

using repeated integration by parts.
I claim that there is a unique ��(�) so that the admission rule speci�ed in

(6.6) - (6.8) satis�es (A.47) as an equation. To see this, take any �� 2 [0; �̂(�)]
and consider the admission rule

�(�j��) = 0 if � 2 [0; ��) (A.48)

�(�j��) = B

�(2�B�) 2 (0; 1) if � 2 [�
�; �̂(�)); (A.49)

and
�(�j��) = 1 if � 2 (�̂(�); 1]: (A.50)

For �� = 0; the admission rule �(�j��) is the same as in Proposition 5.1
which, by assumption, violates (A.47). For �� = �̂(�); �(�j��) provides for
admission if and only if people pay the admission fee �̂(�); under this rule,
the right-hand side of (A.47) is equal to �̂(�)(1� F (�̂(�)): Because �̂(�) lies
between �� and pM ; one has �̂(�)(1 � F (�̂(�)) > ��(1 � F (��)) = �K: By the
intermediate value theorem, therefore, there exists ��(�) 2 (0; �̂(�)) such
that Z 1

0
�(�j��(�))(�f(�)� (1� F (�)))d� = �K: (A.51)

Using (A.5), one easily veri�es that, on the interval [0; �̂(�)] the map

� !
Z 1

0
�(�j��)(�f(�)� (1� F (�)))d�

is increasing; the solution ��(�) to equation (A.51) is therefore unique.
To complete the proof, I show that the stipulated admission rule and

the associated indirect utility function satisfy the optimality conditions for
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the relaxed utilitarian problem with participation constraints. The indirect
utility function is given as

v(�) = Y if � 2 [0; ��(�)]; (A.52)

v(�) = Y � 1
�
ln

2�B�
2�B��(�) if � 2 [��(�); �̂(�)]; (A.53)

and

v(�) = Y � 1
�
ln
2�B�̂(�)
2�B��(�) + � � �̂(�) if � 2 [�̂(�); 1]: (A.54)

To verify the optimality conditions for the relaxed utilitarian problem with
participation constraints, I specify � and ' so that

� =
e��v(�̂(�))

2�B�̂(�)
; (A.55)

'(�) =

Z 1

�
e��(v(�̂(�))+���̂(�))Ae�B�d� � �A

B
(e�B� � e�B) if � 2 [�̂(�); 1];

(A.56)

'(�) =

Z �̂(�)

�

2�B�
2�B�̂(�)

e��v(�̂(�))Ae�B�d� +

Z 1

�̂(�)
e��(v(�̂(�))+���̂(�))Ae�B�d�

��A
B
(e�B� � e�B) if � 2 [��(�); �̂(�)]; (A.57)

and

'(�) =

Z ��(�)

�
e��YAe�B�d� +

Z �̂(�)

��(�)

2�B�
2�B�̂(�)

e��v(�̂(�))Ae�B�d�

+

Z 1

�̂(�)
e��(v(�̂(�))+���̂(�))Ae�B�d� � �A

B
(e�B� � e�B) (A.58)

if � 2 [0; ��(�)]:

The transversality condition '(1) = 0 and the di¤erential equation (3.16)
are automatically satis�ed. It remains to be shown that

g(�) = ��f(�) + '(�) � 0 if � < ��(�); (A.59)

g(�) = ��f(�) + '(�) = 0 if � 2 (��(�); �̂(�)); (A.60)
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and
g(�) = ��f(�) + '(�) � 0 if � > �̂(�) (A.61)

Since g(0) = '(0); the transversality condition '(0) � 0 is automatically
implied by (A.59).

To prove (A.59) - (A.61), I �rst note that (A.55) and (A.56) imply

'(�̂(�)) = �
�
2�B�̂(�)

�Z 1

�̂(�)
e��(���̂(�))Ae�B�d� � �A

B
(e�B�̂(�) � e�B):

By (A.9) and the fact that H(�̂(�)) = 1, it follows that

'(�̂(�)) = ��A�̂(�)e�B�̂(�);

and hence that g(�̂(�)) = ��̂(�)f(�̂(�)) + '(�̂(�)) = 0: (A.61) then follows
from Lemma A.2. For � 2 (��(�); �̂(�)); (A.57) yields

g0(�) =

"
�(2�B�)� e��v(�̂(�)) 2�B�

2�B�̂(�)

#
Ae�B�;

so that (A.55) implies g0(�) = 0 for all � 2 (��(�); �̂(�)): Since g(�̂(�)) = 0;
(A.60) follows. Finally, for � < ��(�); (A.58) and (A.55) yield

g0(�) =
�
�(2�B�)� e��Y

�
Ae�B� = (2�B�)

"
e��v(�̂(�))

2�B�̂(�)
� e��Y

2�B�

#
Ae�B�:

By (A.53), therefore,

g0(�) = (2�B�)
"
e��v(�

�(�))

2�B��(�) �
e��Y

2�B�

#
Ae�B�

= e��Y
�

2�B�
2�B��(�) � 1

�
Ae�B� > 0

for � < ��(�): Since g(��(�)) = 0; (A.59) follows. This completes the proof
that, if �� < �̂(�); the speci�ed admission rule satis�es the optimality condi-
tions of the relaxed utilitarian problem with participation constraints.

The proof of Proposition 6.3 is identical to the proof of Proposition 5.2
and is left to the reader.
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1 Proof of Proposition 3.3

Proposition 1 (Proposition 3.3) The reduced utilitarian problem has a
solution. The solution is unique up to modi�cations of �(�) at discontinuity
points, which form a null set.

Proof. I begin by restating the reduced utilitarian problem in terms of
only the indirect utility function v(�): By Lemma 3.2, one may suppose that
Q = 1: I also claim that the constraint (3.7) can be rewrittenZ 1

0
v(�)[2f(�) + �f 0(�)]d� � v(1)f(1) � Y � �K: (1)

To establish this claim, I note that integration by parts yieldsZ 1

0
��(�)f(�)d� =

�
�f(�)

Z �

0
�(�)d�

�1
0

�
Z 1

0
(f(�) + �f 0(�))

Z �

0
�(�)d� d�:

By the incentive compatibility condition v0(�) = �(�), the integrals
R �
0 �(�)d�

in the second term on the right-hand side can be replaced by v(�) � v(0):
Thus, one obtainsZ 1

0
��(�)f(�)d� = (v(1)� v(0))f(1)�

Z 1

0
(f(�) + �f 0(�))v(�)d� + v(0)f(1):

(2)
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Upon substituting for
R 1
0 Q��(�)f(�)d� on the left-hand side of (3.7), one

obtains (1).
The reduced utilitarian problem is thus equivalent to the problem of

choosing v(�) to maximize the welfare functionalZ 1

0
W (v(�))dF (�) (3)

subject to (1) and subject to the requirement that v(�) admit the representa-
tion (3.8) with Q = 1 for some nondecreasing admission probability function
�(�): Because admission probabilities lie in [0; 1]; this latter requirement is
equivalent to v(�) being nondecreasing, convex, and Lipschitz continuous
with Lipschitz constant one. The reduced utilitarian problem is thus equiv-
alent to the problem of choosing a function v(�) that is nondecreasing, convex
and Lipschitz continuous with Lipschitz constant one so as to maximize (3)
subject to (1).

If the space of expected-payo¤ functions v(�) is given the topology of uni-
form convergence, Lebesgue�s bounded-convergence theorem implies that the
maximand (3) depends continuously on v(�): To prove that the maximization
problem has a solution, it therefore su¢ ces to show that the maximization
can be restricted to a compact set. By the Arzela-Ascoli theorem, this
is equivalent to showing that the set of functions under consideration can
be taken to be uniformly bounded and equicontinuous. Equicontinuity is
implied by the uniform Lipschitz property. Boundedness above is implied
by (1): For any v(�) that satis�es the constraints, the uniform Lipschitz
property implies v(�) � v(1) � 1 for all �. If one uses this inequality to
substitute for v(�) in (1) and then computes the integral, one �nds that
v(1) � Y + 1 + f(1) and, by monotonicity, v(�) � Y + 1 + f(1) for all �:
Boundedness below is obtained by restricting the maximization to functions
that satisfying v(�) � Y � �K for all �: This can be done because any function
with v(0) < Y � �K would have v(�) < Y � �K + � for all � and would be
dominated by the expected payo¤s Y � �K + � under an open-admissions
regime for the public good.

To prove uniqueness, I note that the set of functions v(�) that satisfy (1)
and that are nondecreasing, convex and Lipschitz continuous with Lipschitz
constant one is a convex set. BecauseW (�) is strictly concave, the solution to
the problem of maximizing (3) over this set is unique. Because the solution
function v(�) is a convex function, it has a nondecreasing subdi¤erential
correspondence. The admission probability function �(�) may be taken to be
any selection of this correspondence. Any two such selections have the same
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(countable) set of discontinuity points and are the same, except possibly, at
discontinuity points.

2 Proof of Proposition 4.1

Proposition 2 (Proposition 4.1) There exists A > 0 such that, if �W (v) �
A for all v; then the solution to the reduced utilitarian problem satis�es
�(�) = 1 and v(�) = Y � �K + � for all �:

Proof. I will show that the speci�ed �(�) and v(�) satisfy the conditions of
Proposition 3.5 if inequality aversion is su¢ ciently small. If � and '(�) are
given by (3.18) and (3.19), conditions (3.15) and (3.16) are automatically
satis�ed, and it su¢ ces to verify (3.17). If �W (v) � A for all v, then, by a
straightforward integration of this inequality, one obtains

W 0(v(0) + �) �W 0(v(0))e�A� (4)

for all �: By (3.19), therefore,

� �W 0(v(0))

Z 1

0
e�A�f(�)d� �W 0(v(0))e�A: (5)

Because, by l�Hospital�s rule, the ratio �f(�)
F (�) converges to one as � goes

to zero, this ratio is bounded away from zero, and there exists A > 0 so that

eA � 1 < �f(�)

F (�)
(6)

and therefore,
�[�f(�)� F (�)(eA � 1)] > 0 (7)

for all � 2 (0; 1]: By (5), it follows that
�[�f(�) + F (�)]�W 0(v(0))F (�) > 0 (8)

for all � 2 (0; 1]: By the concavity of W; therefore,

�[�f(�) + F (�)]�
Z �

0
W 0(v(0) + �) f(�)d� � 0 (9)

for all �: For the given admission rule and � satisfying (3.19), it follows that

��f(�) +

Z 1

�
W 0(v(0) + �) f(�)d� � �(1� F (�)) � 0;

or
��f(�) + '(�) � 0

for all �: For the given admission rule, this is just (3.17).
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3 Proof of Proposition 4.2

Proposition 3 (Proposition 4.2) Let pM = min argmax� �(1� F (�)) be
the smallest monopoly price, and let �M (�) be the admission rule that people
get admitted if and only if they pay pM ; i.e., �M (�) = 0 for � 2 [0; pM ) and
�M (�) = 1 for � 2 (pM ; 1]: If fWkg is a sequence of welfare functions such
that limk!1 �Wk

(v) = 1; uniformly in v; the solutions (vk(�); �k(�)) to the
associated reduced utilitarian problems satisfy

lim
k!1

vk(�) = Y � �K + pM (1� F (pM )) + max(� � pM ; 0) (10)

for all �; and
lim
k!1

�k(�) = �M (�) (11)

for all � 6= pM :

Proof. Let v� := Y � �K + pM (1�F (pM )): I will show that, if the sequence
fWkg of welfare functions has inequality aversion going uniformly out of
bounds, the associated sequence f(vk(�); �k(�))g of solutions to the reduced
utilitarian problem satis�es

lim
k!1

vk(0) = v�: (12)

More precisely, I will show that, for any " > 0; one has v� � vk(0) � v� � "
if k is su¢ ciently large. The �rst of these inequalities is immediate from
the feasibility constraint. To prove that the second inequality holds if k is
su¢ ciently large, I will show that for any pair (v(�); �(�)) with v(0) < v�� "
that satis�es the constraints of the reduced utilitarian problem, one hasZ 1

0
Wk(v(�))f(�)d� < Wk(v

�)

if k is su¢ ciently large. By the Lipschitz property of v(�) and the concavity
of Wk, one obtains

Wk(v(�))�Wk(v
� + �) � Wk(v(0) + �)�Wk(v

� + �)

� W 0
k(v

� + �)(v(0) + � � v� � �)
� W 0

k(v
� + �)(�"+ � � �)

for all � � 0 and all �: In particular,

Wk(v(�))�Wk(v
�) �W 0

k(v
�)(�"+ �)
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for all �: For any " < 1 and any � � 0; one therefore hasZ 1

0
Wk(v(�))f(�)d� �Wk(v

�)

�
Z "

0
(Wk(v(�))�Wk(v

�))dF (�)

+

Z 1

"
(Wk(v(�))�Wk(v

� + �))dF (�)

+ (Wk(v
� + �)�Wk(v

�)) (1� F ("))

�W 0
k(v

�)

Z "

0
(�"+ �)dF (�)

+W 0
k(v

� + �)

Z 1

"
(�"+ � � �)dF (�) + (Wk(v

� + �)�Wk(v
�))

�W 0
k(v

�)

Z "

0
(�"+ �)dF (�) +W 0

k(v
� + �)(1� ") +W 0

k(v
�)�

�W 0
k(v

�)

�Z "

0
(�"+ �)dF (�) + e�Ak�(1� ") + �

�
; (13)

where Ak is a lower bound for �Wk
(�). If � = 1

2

R "
0 ("��)dF (�), the right-hand

side of (13) is negative if k and therefore Ak are su¢ ciently large. Thus,
v(0) < v� � " implies

R 1
0 Wk(v(�))f(�)d� < Wk(v

�) if k is su¢ ciently large.
(12) follows immediately. By inspection of the feasibility constraint, this
time in the form (14), it follows that any limit point �1 of the sequence
f�kg must have its points of increase contained in the set of maximizers of
the product �(1 � F (�)): Any such limit must therefore satisfy �1(�) = 0
for � < pM : By Proposition ??, one also has �1(�) = 1 for all � > pM : (11)
and (10) follow immediately.

4 Proof of Proposition 4.3

Proposition 4 (Proposition 4.3) Regardless of �W (�); the solution to the
reduced utilitarian problem satis�es �(�) = 1 for all � > pM :1

1Strictly speaking, the proposition only shows that it is never desirable to be more
restrictive than a pro�t-maximizing monopolist. However, using (14), one can show that,
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Proof. I �rst show that �(�) = 1 for all � > pM : Using integration by parts
twice, with Q = 1; one can rewrite the feasibility constraint (3.10) in the
form

v(0) � Y � �K +

Z 1

0
�(�) [�f(�)� (1� F (�))] d�

= Y � �K +

Z 1

0
�(1� F (�))d�(�): (14)

Thus, any admission rule �(�) with �(��) < 1 for some �� > pM is dominated
by an admission rule �̂(�) with �̂(�) = �(�) for � < pM and �̂(�) = 1 for
� > pM : Replacing �(�) by �̂(�) removes points of increase of �(�) above pM
and replaces them with a point of increase at pM : Because pM maximizes
the integrand �(1 � F (�)) in (14), the net e¤ect of this shift on the right-
hand side of (14) is nonnegative, and v(0) is at least as high as before. At
the same time, the information rents

R �
0 �(�)d� of people with � > pM and,

with them, the value of the welfare functional (3) go up.

if the threshold for � = 1 is shifted downwards from pM to a point p just below pM ; the
loss in admission fees revenues is small relative to the gain in information rents for people
with � > pM : I am not stating this formally because, in the absence of any information,
apart from monotonicity, about the structure of �(�); the formal argument takes too much
space. For the relaxed utilitarian problem, the claim is obvious from (??) showing that
g(pM ) > 0:
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