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Abstract

This paper examines the prices versus quantities issue, originally raised by Weitzman [8],
in the context of carbon dioxide emissions and with a special focus on electricity genera-
tion. Within a simplified model of the electricity market, in which we explicitly allow for
a monopolistic gas supplier, we employ a game-theoretic approach and ask, from a welfare
perspective, for the superior regulatory regime in response to an expected exercise of market
power. Our analysis studies the optimal regulation in each regime and shows that, in the
presence of market power in the gas market, taxes rather than permits are the regulator’s
welfare-maximizing regime choice.
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1 Introduction

A standard method to correct for an externality, as, for example, air pollution and climate
change resulting from the burning of coal, is to impose a (linear) tax at the rate of marginal
external damages on the use of the entity responsible for the externality. In an idealized deter-
ministic environment with perfect information and no transaction costs, any outcome of a price
regulation via (linear) taxes can also be achieved by a regulation based on quantities, e.g., via
a cap-and-trade scheme. Under a cap-and-trade scheme, the regulator issues a fixed quantity of
permits, each of which allows its holder to generate one predetermined unit of the externality,
and allows to trade these allowances, resulting in a market price for permits. In particular, both
taxes and the market mechanism for tradeable permits are economically efficient since they allow
the externality to be reduced at least cost, i.e., where it is cheapest for the economy.1

The European Emissions Trading Scheme (ETS), introduced by the European Union in 2005 in
order to reduce carbon dioxide emissions, is one example of a cap-and-trade scheme. Basically,
by assigning emission rights and then allowing to trade these rights, the ETS is a restriction
on the annual flow of carbon dioxide emissions, covering different industry sectors as, among
others, electricity generation, the largest covered sector in terms of emissions. Alternatively,
governments could establish a price for carbon by imposing a (linear) tax on emissions. In this
paper we compare (linear) taxes and tradeable permits in the context of carbon dioxide emis-

∗I am especially grateful to Martin Hellwig for offering valuable advice on an earlier version of this paper.

Many thanks to Christoph Engel and my colleagues Jos Jansen, Stefan Magen, and Philipp Weinschenk for

helpful comments.

1Note that either the tax rate or the equilibrium price of permits will equal each originator’s marginal costs

of reducing the externality.
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sions from electricity generation, although in a specific setting.2

Weitzman [8] shows in a seminal paper that, in the presence of uncertainty or asymmetric infor-
mation about abatement costs and/or environmental damages, a quantity control is preferable
to a price control (a linear tax) if and only if the marginal benefit of abatement curve is steeper
than the marginal cost of abatement curve and vice versa.3 If in the context of climate change,
as part of the related literature appears to suggest, marginal costs of abatement are steeper
than marginal benefits from reducing a pollutant, then this would be an argument for the use
of carbon taxes rather than permits.4

In a recent article, Newbery [6] investigates the effect of the European ETS on market power
in the gas market and provides another argument for taxes rather than permits. Building on
the observation that there is “existing market power in the gas market”,5 he argues that “fixing
the quantity rather than the price of carbon reduces the price elasticity of demand for gas ap-
preciably, amplifying the market power of gas suppliers, and amplifying the impact of gas price
increases on the electricity price.” According to Newbery, ”the amplification of market power
works through the impact on the price of EU Emission Allowances, which, as gas prices rise
and lead to [the more-carbon intensive fuel] coal substituting for [the less-carbon intensive fuel]
gas, raise emissions and hence the price of EU Emission Allowances, which in turn favours gas,
offsetting the normal market demand response to an increase in the price of gas.”
Similar to Newbery [6], it is the aim of our paper to compare (linear) taxes and tradeable per-
mits in the context of carbon dioxide emissions from electricity generation, explicitly taking into
account the effects of market power in the gas market. In contrast to Newbery, however, we
employ a game-theoretic approach and study the optimal regulation in response to an expected
exercise of market power: In each regime, taxes and permits, we search for that level of the
regulatory device which is welfare-optimal given that the gas supplier in turn and from his per-
spective optimally responds in exercising market power, and compare the two in order to find
the regulator’s welfare-superior regime choice. In order to elicit the effects of market power in

2For a general discussion, cf. Grubb and Newbery [1]; or K. Neuhoff [5]. For a recent review of the literature

on prices versus quantities, cf. Hepburn [2].

3Intuitively, if marginal costs are approximately constant and marginal benefits are steep, then the smallest

deviation from the tax level corresponding to the optimal quantity (which equates marginal benefits and marginal

costs from abatement) results (in the quantity at which marginal costs equal the tax rate and thus) in a high

deviation from the optimal quantity — specifying a quantity directly is the better alternative. On the other hand,

if marginal benefits are approximately constant and marginal costs are steep, even a high deviation in the tax level

will only result in a small deviation from the optimal quantity — using a tax and letting the originator(s) choose

a quantity close to the optimal level is the better alternative. Note that many subsequent contributions have

modified the assumptions in Weitzman’s uncertainty analysis. One strand of literature, for example, discusses the

prices versus quantities question in a dynamic context where environmental damages are caused by a pollution

stock rather than being a (quadratic) function of the flow of pollution (cf., for example, Newell and Pizer [7]).

4Cf. Neuhoff [5], Section 3.2; or Newbery [6], Section 5: “For most pollutants the marginal abatement cost

schedule is fairly flat and low for modest abatement, but rises rapidly as a higher fraction of emissions is to be

curtailed. The damage contributed by emissions today is effectively the same as those tomorrow, and so the

marginal benefit of abatement is essentially flat at each moment, while the marginal cost of abatement rises

rapidly beyond a certain point, arguing for taxes rather than quotas.”

5In the words of Newbery [6], Section 2.3: “While the international market for coal is reasonably competitive,

the same is not true for gas, particularly in Europe, which is heavily dependent on importing Russian gas from

the monopoly supplier, Gazprom. In addition, gas producers and suppliers in the EU have more market power

than the suppliers of other fuels.” Cf. Grubb and Newbery [1], Section 4.1.
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the gas market, we deviate from Weitzman’s analysis in that we presume perfect information
(about abatement costs and environmental damages).

In the following, we develop a simplified model of the electricity market (with elastic electricity
demand), in which we explicitly introduce a gas supplier endowed with market power. Such
exercise of market power has a direct effect on electricity producers, who, in our model, can
reduce emissions (and react to relative price changes between coal, gas and permits or taxes)
merely by substituting coal-based by gas-based production. The regulator, taking into account
the gas supplier’s strategic response to her policy choice, aims at maximizing welfare from elec-
tricity generation. Our notion of welfare excludes the gas supplier’s profits resulting from his
monopolistic behaviour;6 our analysis, however, outlines the respective consequences of welfare
maximization for the gas supplier’s profits.
In order to examine the effects of market power in the gas market, our game-theoretic anal-
ysis contrasts two different scenarios. In the ”competitive scenario”, the gas price is set at
marginal costs. In the ”monopolistic scenario”, the gas supplier chooses his price in order to
maximize profits. Based on the only presumption that coal-based per-unit-of-electricity emis-
sions are above gas-based per-unit-of-electricity emissions,7 our analysis comes to the following
conclusions (which refer to Proposition 1 to 5 in our analysis, respectively):
1) In the competitive scenario, where the gas price equals marginal gas production costs, we

obtain the expected benchmark result: The regulator’s welfare-maximizing policy in each
regime implies the same welfare level. Taxes and permits are equivalent.

2) In the emission taxes regime, the regulator’s welfare-maximizing tax level choice equals the
marginal welfare costs of emissions, in both the competitive and the monopolistic scenario.
In other words, market power in the gas market has no effect on the optimal tax level; and,
the higher the welfare costs of emissions, the higher is the optimal tax level.

3) In the emission permits regime, market power in the gas market has an effect on the optimal
permits level, and the direction of this effect depends on the magnitude of the difference
between coal-based and gas-based per-unit-of-electricity emissions: The regulator’s welfare-
maximizing permits level choice in the monopolistic scenario is higher than his optimal choice
in the competitive scenario if and only if the difference between coal-based and gas-based
per-unit-of-electricity emissions is sufficiently high.8

4) In the monopolistic scenario, i.e., whenever there is market power in the gas market, taxes
are the regulator’s welfare-maximizing regime choice, except for very specific parameter
constellations, under which taxes and permits guarantee for the same welfare and result in
the same profits for the gas supplier. And, except for these specific parameter constellations,

5) maximizing welfare in the monopolistic scenario of the emission taxes regime implies higher
profits for the gas supplier than maximizing welfare in the permits regime.

6Referring also to the preceding footnote, the reader can think of the European case and the Russian gas

supplier Gazprom (which does not belong to the European Union and could be considered as external in terms

of welfare considerations).

7Cf. Neuhoff [5], Section 1.2: “For example in the electricity sector, burning natural gas instead of coal for

power generation can reduce carbon emissions by about 50% per unit of electricity produced.”

8Note that in the monopolistic scenario, as we will explain, the regulator’s optimal binding (i.e., effectively

restricting the electricity producers) permits level is welfare-superior to a non-binding permits level if and only

if the marginal welfare costs of emissions are sufficiently high. Our result concerning the regulator’s welfare-

maximizing permits level choice refers to this case, i.e., to the optimal binding permits level.
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We proceed as follows. Section 2 introduces our simple model. Section 3 outlines the benchmark
result obtained for the competitive scenario. Section 4 and 5 are devoted to the analysis of the
monopolistic taxes and permits regime, respectively. Section 6 compares the two regimes. A
mathematical presentation of all (intermediate) results and corresponding proofs can be found in
Appendix B. Remarks and standard calculations are deferred to Appendix A and C, respectively.

2 Our Model

Our simplified model of the electricity market consists of an environmental regulator, a gas sup-
plier, and electricity producers. Electricity consumers enter only through their demand E( · ),
which is a function of electricity price ω ∈ R++, and is derived from their maximization of utility
from electricity consumption U( · ), a function of units E ∈ R+ consumed, minus corresponding
costs ω · E via U ′(E) = ω.9

For the supply of electricity, each producer can make use of two independent technologies, one
based on the input coal, the other based on the input gas. Electricity producer i’s correspond-
ing production function is denoted by F (i)(K,G) = F

(i)
coal(K) + F

(i)
gas(G), where K ∈ R+ and

G ∈ R+ denote the input units of coal and gas, respectively. An electricity producer is assumed
to maximize profits by choosing the input quantities appropriately, taking as given gas price
γ ∈ R++, coal price pK ∈ R++, the equilibrium price of electricity ω∗, and, depending on the
regime, either tax level (“carbon price”) p ∈ R+ or the equilibrium price of emission permits
P ∗.
Assuming that total emissions from the production of electricity by producer i can be expressed
as a function e(i)( · , · ) of the input units Ki and Gi used, electricity producer i’s profit is given
by Π(i)(Ki, Gi) = ω · F (i)(Ki, Gi) − pK · Ki − γ · Gi − x · e(i)(Ki, Gi), where x either equals
tax level p (in an emission taxes regime) or the price of permits P (in an emission permits
regime). In an emission taxes regime, letting (K∗i (ω, p), G∗i (ω, p)) denote electricity producer
i’s profit-maximizing input combination as a function of electricity price ω and tax level p, the
equilibrium price of electricity ω∗ equates demand and supply in the market for electricity and
is thus determined by E(ω∗) =

∑
i F

(i)(K∗i (ω∗, p), G∗i (ω
∗, p)). In an emission permits regime,

letting (K∗i (ω, P ), G∗i (ω, P )) denote electricity producer i’s profit-maximizing input combination
as a function of electricity price ω and permits price P , equilibrium prices ω∗ and P ∗ are deter-
mined by E(ω∗) =

∑
i F

(i)(K∗i (ω∗, P ∗), G∗i (ω
∗, P ∗)) and

∑
i e

(i)(K∗i (ω∗, P ∗), G∗i (ω
∗, P ∗)) = a,

where a ∈ R+ denotes the level of emission allowances.
In our analysis we abstract from the allocation process (which is presumed to be efficient) within
the supply side of the electricity market, and assume that both production and emission func-
tions are the same across (non-strategic and price-taking) producers.10 This allows us to model
the supply side of the electricity market by introducing one (representative) electricity producer,
whose choice maximizes

Π(permits)(K,G) := ω · F (K,G)− pK ·K − γ ·G subject to e(K,G) ≤ a

9Note that all functions are specified in more detail later in this section.

10For literature on the theory of environmental regulation in imperfectly competitive markets, cf., for example,

Mansur [4]. In particular, Mansur examines the welfare implications of prices versus quantities when firms have

market power in selling a polluting good (esp. electricity) and the environmental regulator assumes a competitive

product market. For a recent article which reviews the literature on market power in pollution permit markets,

cf. Montero [3].
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in an emission permits regime,11 and

Π(taxes)(K,G) := ω · F (K,G)− pK ·K − γ ·G− p · e(K,G)

in an emission taxes regime, taking as given the price of gas and coal, and the equilibrium price
of electricity determined by

E(ω) = F (K(ω), G(ω)).

In our model, the gas supplier can supply gas at per-unit costs of ψ ∈ R++. Whereas coal
price pK is assumed to be set on competitive markets, we consider two different scenarios
with respect to the gas supplier’s price choice: In the competitive scenario, gas price γ equals
marginal/average cost ψ; in the monopolistic scenario, the gas supplier chooses γ ∈ [ψ,∞) so as
to maximize profits.

The regulator aims at maximizing welfare from electricity generation. If the coal suppliers gen-
erate zero economic profit, then a measure of welfare, excluding the gas supplier’s profits, can
be defined by the difference between the utility from electricity consumption and the sum of the
factor costs of electricity production and the social costs of emissions:

W = U(E)− pK ·K − γ ·G− q · e(K,G),

where “marginal emission cost” q ∈ R++ is a measure of the per-unit-of-emissions welfare. The
regulator’s choice is the regime and the level of the regulatory device, i.e., the tax or permits
level. In summary, the sequence of actions in the monopolistic scenario is as illustrated in Figure
1.

r���
�
��

@
@
@
@
@@

r�������
��

��

PPPPPPPPPPP

r�������
��

��

PPPPPPPPPPP

r�������
��

��

PPPPPPPPPPP

r�������
��

��

PPPPPPPPPPP

r�������
��

��

PPPPPPPPPPP

r�������
��

��

PPPPPPPPPPP

Regulator Gas Supplier Electricity Producer

permits

taxes

a ∈ R+

p ∈ R+

γ ∈ [ψ,∞)

γ ∈ [ψ,∞)

(K,G) ∈ R2
+

(K,G) ∈ R2
+

Figure 1

Our analysis of the two regimes follows standard backward induction and concentrates on the
following specifications. Electricity demand is assumed to be linear in price, i.e.,

E(ω) = β0 − β1 · ω

for some constants β0, β1 ∈ R++. The electricity producer’s production function satisfies

F (K,G) = Fcoal(K) + Fgas(G) = 2 · fK ·
√
K + 2 · fG ·

√
G

for some constants fK , fG ∈ R++. And, emissions from the production of electricity depend on

11Essentially, the price equilibrium in the market for permits reduces to a quantity constraint for the electricity

producer. A positive equilibrium permits price corresponds to a binding quantity constraint. Cf. Appendix A.
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the respective input used, and are linear in the respective units of electricity produced:

e(K,G) = 2 · δK ·
√
K + 2 · δG ·

√
G

for some constants δG, δK ∈ R++. In other words, we assume that there exist two constants δ̃K ,
δ̃G ∈ R++ (representing coal-based and gas-based per-unit-of-electricity emissions, respectively)
such that e(K,G) = δ̃K · Fcoal(K) + δ̃G · Fgas(G) = δ̃K · 2fK

√
K + δ̃G · 2fG

√
G, and define

δK := δ̃KfK and δG := δ̃GfG. If electricity demand is determined by U ′(E) = ω = β0−E
β1

, then

U(E) =
β0

β1
· E − 1

2β1
· E2.

Our analysis concentrates on the interior input factor area of electricity production and ab-
stracts from the possibility that electricity could in principle be produced by using either gas or
coal but not both. Technically, we restrict the electricity producer’s choice set to the open area
(K,G) ∈ R2

++ and require each player’s equilibrium strategy to specify an action only (more
precisely: exactly) at those of her/his decision nodes where there exists at least one action that
results (via sequential rationality) in a well-defined outcome of the game and at the same time
maximizes the player’s target (welfare or profit) over all alternatives with a well-defined out-
come; each player’s equilibrium strategy must specify such an action at each of these decision
nodes.12 In order to guarantee the existence of an equilibrium in each regime,13 we assume that
marginal emission cost q satisfies

q < q̄ :=
β0fKψ

R
,14

where R and D are as defined below. Furthermore, we presume that coal-based per-unit-of-
electricity emissions δ̃K are higher than gas-based per-unit-of-electricity emissions δ̃G. Since
fKδG− fGδK = fK δ̃GfG− fGδ̃KfK = fKfG(δ̃G− δ̃K), this is equivalent to the requirement that

D := fKδG − fGδK < 0.

The results of our analysis depend, in part, on whether this measure of the difference between
coal-based and gas-based per-unit-of-electricity emissions is (relatively) high or low, more pre-
cisely on whether

Q := β1δGpK + 2fKD

is lower or greater than (or equal to) zero. For notational convenience, we define (on γ ∈ R++)

R(γ) := β1δKγ − 2fGD,

Ψ(γ) := β1(δ2
GpK + δ2

Kγ) + 2D2, and

Φ(γ) := (β1pK + 2f2
K)γ + 2f2

GpK ,

and abbreviate R := R(ψ), Ψ := Ψ(ψ), and Φ := Φ(ψ).

12In other words, we require the electricity producer’s equilibrium strategy to specify an action only at those of

his decision nodes where previous decisions (about the gas price and the tax or permits level) allow him to maximize

profits by choosing an input factor combination which is strictly positive in each component. Correspondingly,

we require the gas supplier’s equilibrium strategy to specify a gas price choice only at those of his decision nodes

where the tax or permits level allows him to maximize profits over all alternatives which allow the electricity

producer to maximize his profits within (K,G) ∈ R2
++. And, finally, the regulator’s equilibrium (regime and

tax or permits level) choice must maximize welfare over all alternatives that allow the gas supplier to maximize

profits over all alternatives which allow the electricity producer to maximize his profits within (K,G) ∈ R2
++.

13Note that, in the following, the word ‘equilibrium’ often refers to the subgame starting after the regulator’s

regime choice.

14Cf. Appendix B, Lemma 1c, part f) of both Lemma 2.1 and 2.2, and Lemma 3a and b.

6



Finally, note that, in principle, an emission permits level can be either binding or not. Whether
or not a permits level will be binding, i.e., effectively restricting the electricity producer’s choice,
depends on both the regulator’s preceding permits level choice and the gas supplier’s price
response. Given a specific permits level choice, it might well be in the gas supplier’s interest to
respond with a gas price resulting in a non-binding permits level. And, taking into account the
gas supplier’s strategic response to her policy choice, it is a priori not clear whether the regulator
would prefer a binding to a non-binding permits level from a welfare perspective. Therefore,
our analysis has to keep track of both cases.15 Before we proceed, please remember that a
mathematical derivation of all the following is provided in Appendix B.

3 Analysis of the Competitive Scenario

In the competitive scenario, gas price γ equals marginal/average cost ψ. Correspondingly, our
four-stage game formally reduces to three non-trivial stages: First, the regulator chooses the
regime and level of the regulatory device. Afterwards, the electricity producer’s choice of the
two input quantities determines the combination of coal- and gas-based production.
In any equilibrium of the emission taxes regime, the electricity producer’s profit maximization,
taking as given gas price (γ =)ψ and coal price pK , together with market clearing in the market
for electricity implies that factor inputs K and G equal

K∗ :=
(
β0γfK − pR(γ)

Φ(γ)

)2

=
(
β0ψfK − pR

Φ

)2

and G∗ :=
(
β0pKfG − pQ

Φ(γ)

)2

=
(
β0pKfG − pQ

Φ

)2

,

respectively. Given these levels of coal- and gas-based electricity production, welfare, as a func-
tion of tax level p, can be calculated as (a quadratic function of p)

Wψ(p) :=
−2β1Ψ · p2 + 4β1qΨ · p+ 2β0[β0(f2

Kψ + f2
GpK)− 2β1q(fKδKψ + δGfGpK)]

2β1Φ
.

It follows that the regulator’s welfare-maximizing tax level choice is p∗ := q, i.e., the optimal
tax level equals the marginal welfare costs of emissions, resulting in welfare level

Wψ(p∗) = WC(q) :=
β1Ψ · q2 − 2β1β0(fKδKψ + fGδGpK) · q + β2

0(f2
Kψ + f2

GpK)
β1Φ

.

Lemma 1 in Appendix B confirms that (K∗(p∗), G∗(p∗), p∗) is the unique equilibrium in the
competitive scenario of the emission taxes regime.
In the emission permits regime, equilibrium factor inputs depend upon whether or not the per-
mits level is binding, i.e., upon whether or not the permits level effectively restricts the electricity
producer’s profit maximization, taking as given gas price ψ, coal price pK , and the market clear-
ing price of electricity. In any equilibrium of the emission permits regime, factor inputs K and
G equal

K∗
A :=

(
β0γfK
Φ(γ)

)2

=
(
β0ψfK

Φ

)2

and G∗
A :=

(
β0pKfG

Φ(γ)

)2

=
(
β0pKfG

Φ

)2

,

respectively, if the permits level is non-binding, and they equal

K∗
B :=

(
2β0δGD + aR(γ)

2Ψ(γ)

)2

=
(

2β0δGD + aR

2Ψ

)2

and
G∗
B :=

(
2β0δK(−D) + aQ

2Ψ(γ)

)2

=
(

2β0δK(−D) + aQ

2Ψ

)2

,

respectively, if the emission permits level is binding. In particular, an emission permits level is

15In particular, as it turns out, the regulator’s decision for or against a binding permits level depends on

whether or not marginal emission cost q is greater or lower than
q̃ (Q)

def
=

{ β0pKfG(−Q)

2β1δ
2
K

Φ
if Q ≤ 0

β0pKfGQ

2(β1pK+2f2
K

)Ψ
if Q ≥ 0

.
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binding if and only if it is lower than e(K∗A, G
∗
A) = 2δK

(
β0ψfK

Φ

)
+ 2δG

(
β0pKfG

Φ

)
=: a1. In the

latter case, welfare, as a function of permits level a, can be calculated as

Wψ(a) :=
−β1Φ · a2 + [4β0β1(fKδKψ + fGδGpK)− 4β1qΨ] · a+ 4β2

0D
2

4β1Ψ
.

It follows that the regulator’s welfare-maximizing permits level choice, if going for the binding
permits level alternative, is a∗C(q) := a1 − 2Ψ

Φ q > 0, resulting in welfare level

Wψ(a∗C) = WC
B (q) :=

1
β1ΨΦ

[
β1(β0(fKδKψ + fGδGpK)− qΨ)2 + β2

0D
2Φ
]
.

If, on the other hand, the emission permits level is (chosen such that it is) non-binding, then
the resulting welfare equals that of the taxes regime (i.e., Wψ(p)) for tax level p = 0, which is
lower than WC

B (q). In other words, the regulator’s welfare-maximizing permits level choice is
a∗C . Lemma 2 in Appendix B confirms that (K∗B(a∗C), G∗B(a∗C), a∗C) is the unique equilibrium in
the competitive scenario of the emission permits regime, and one with a binding permits level.
Comparing the welfare levels of the two equilibria, we obtain the expected benchmark result.

Proposition 1
In the competitive scenario, where gas price γ equals the gas supplier’s per-unit cost ψ, the
gas supplier’s profits are zero, and the regulator’s optimal policy in each regime (tax level q in
the taxes regime and permits level a∗C in the permits regime) implies the same welfare level:
WC
B (q) = WC(q) (cf. Lemma 3c in Appendix B). In particular, both taxes and permits can be

part of an equilibrium of the three-stage game starting with the regulator’s regime choice.

4 Analysis of the Emission Taxes Regime

In the monopolistic scenario of the emission taxes regime, in contrast to the competitive sce-
nario, the gas supplier can optimally react in response to the regulator’s tax level choice, given
his perception about the electricity producer’s corresponding choice of the two input quantities.
In any equilibrium of the emission taxes regime, the electricity producer’s profit maximization,
taking as given gas price γ and coal price pK , together with market clearing in the market for
electricity implies that factor inputs K and G equal (K∗ and G∗ as defined in Section 3, i.e.,)

K∗ def=
(
β0γfK − pR(γ)

Φ(γ)

)2

and G∗ def=
(
β0pKfG − pQ

Φ(γ)

)2

,

respectively. Given these levels of coal- and gas-based electricity production, welfare, as a func-
tion of tax level p, can be calculated as

Wγ(p) :=
W̃2(γ) · p2 + W̃1(γ) · p+ W̃0(γ)

2β1Φ(γ)
,

where W̃2(γ) := −2β1Ψ(γ) < 0, W̃1(γ) := 4β1qΨ(γ) > 0, and W̃0(γ) := 2β0[β0(f2
Kγ + f2

GpK)−
2β1q(fKδKγ + δGfGpK)]. In particular, if gas price γ does not depend on tax level p, then
welfare Wγ(p) is maximized at p = q, independent of the specific γ.
Since the gas supplier’s profits, given by (γ − ψ) ·G∗(γ), are maximized at

γ∗ :=
Φ

β1pK + 2f2
K

+ ψ,

which is independent of the regulator’s tax level choice p,16 the regulator’s welfare-maximizing
tax level choice is p∗ := q, i.e., the optimal tax level equals the marginal costs of emissions.

16This independence of the optimal gas price from the regulator’s tax level choice results, in particular, from

the property that gas demand G∗ and thus the gas supplier’s profit as a function of gas price γ and tax level p is

separable in these two parameters, i.e., can be written as the product of two functions, one in γ, the other in p.
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Note that two ingredients of our model are responsible for the regulator’s welfare-maximizing
tax level choice to equal marginal emission cost q in both the competitive and monopolistic sce-
nario: First, the gas supplier’s optimal price choice in the monopolistic scenario is independent
of the regulator’s tax level choice, as is ψ in the competitive scenario; and, second, welfare at a
specific gas price is maximized by choosing the tax level equal to q, independent of the specific
(value of the) gas price.
To illustrate the second property, consider welfare Wγ(p) as composed of utility and costs. The
sum of factor and emission costs, a quadratic function of tax level p, is decreasing in p (as G∗,
K∗, and electricity demand E∗ = F (K∗, G∗) are decreasing in p). For the same reason, also
the utility from electricity consumption, which again is a quadratic function of tax level p, is
decreasing in p. The optimal tax level maximizes the difference between the two, i.e., between
utility and costs. In other words, at q the slopes of the two curves with respect to tax level p
are the same:
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Considering now the effect of a change in gas price γ, we observe the following. The slope of
the utility curve with respect to tax level p and at each specific p is decreasing in the gas price:
The utility effect of an increase in gas price γ on the optimal tax level is negative. However,
as outlined above, this effect is exactly neutralized by a corresponding change in (the slope of)
factor and emission costs. Tax level q remains the point where the slopes of the two curves with
respect to tax level p are the same.

If the regulator chooses tax level p∗ = q and the gas supplier gas price γ∗, then welfare equals

Wγ∗(p∗) = WM (q) :=
W̃M

2 · q2 + W̃M
1 · q + W̃M

0

2β1Φ
,

where W̃M
0 := β2

0(f2
Kψ + f2

GpK + f2
KΦ

β1pK+2f2
K

), W̃M
1 := −2β1β0(fKδKψ + fGδGpK + fKδKΦ

β1pK+2f2
K

), and

W̃M
2 := β1(Ψ + β1δ

2
K

β1pK+2f2
K

Φ). The gas supplier’s corresponding profits are

(γ∗ − ψ) ·G∗(γ∗, p∗) = Γ(q) :=
(β0pKfG − qQ)2

4Φ · (β1pK + 2f2
K)

> 0.

Lemma 1 in Appendix B confirms that (K∗(γ∗, p∗), G∗(γ∗, p∗), γ∗, p∗) is the unique equilibrium
in the monopolistic scenario of the emission taxes regime. Proposition 2 summarizes our results.

Proposition 2
In the monopolistic scenario of the emission taxes regime, the regulator’s welfare-maximizing tax
level choice equals marginal emission cost q as in the competitive scenario, resulting in welfare
level WM (q) and profits Γ(q) for the gas supplier.
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5 Analysis of the Emission Permits Regime

Our analysis of the emission permits regime depends upon whether measure Q of the difference
between coal-based and gas-based per-unit-of-electricity emissions is lower than, greater than,
or equal to zero. The following three paragraphs are devoted to these three cases, respectively.

5.1 The Case of a High Difference in Per-Unit-of-Electricity Emissions

Suppose that Q < 0 and consider the monopolistic scenario. As already mentioned earlier, in
the emission permits regime, equilibrium factor inputs depend upon whether or not the per-
mits level is in fact binding, i.e., upon whether or not the permits level effectively restricts the
electricity producer’s profit maximization, taking as given gas price γ, coal price pK , and the
market clearing price of electricity. In particular, in any equilibrium of the emission permits
regime factor inputs K and G equal

K∗
A

def=
(
β0γfK
Φ(γ)

)2

and G∗
A

def=
(
β0pKfG

Φ(γ)

)2

,

respectively, if the emission permits level is non-binding, and they equal

K∗
B

def=
(

2β0δGD + aR(γ)
2Ψ(γ)

)2

and G∗
B

def=
(

2β0δK(−D) + aQ

2Ψ(γ)

)2

,

respectively, if the emission permits level is binding.

In case of a binding permits level, the gas supplier’s profits are given by (γ − ψ) · G∗B(γ) and
maximized at gas price

γ∗B :=
Ψ

β1δ2
K

+ ψ.

Defining CB(a) := (γ∗B − ψ) ·G∗B(γ∗B), curve CB( · ) reflects the gas supplier’s achievable profits
in case of a binding permits level. It is a quadratic function of a, which obtains its minimum
value 0 at some level a6 > 0.
In case of a non-binding permits level, the gas supplier’s profits are given by (γ − ψ) · G∗A(γ)
and maximized at γ∗A := γ∗ (cf. Section 4). Defining CA(a) := (γ∗ − ψ) ·G∗A(γ∗), curve CA( · )
reflects the gas supplier’s achievable profits in case of a non-binding permits level. It is a con-
stant function of a, i.e., CA(a) has the same value C̄A for every permits level a.
Denoting the two intersections of CB( · ) with CA( · ) by a3 < a6 and a7 > a6, Figure 3 illustrates
the two curves. The precise “values” of variables a0 to a7 are provided in Appendix B.
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If going for the binding permits level alternative, the gas supplier maximizes his profit (γ −ψ) ·
G∗B(γ) subject to 2δK

√
K∗A + 2δG

√
G∗A > a, i.e., subject to the permits level being binding.

Note that the inequality constraint cannot be satisfied for non-negative gas prices if (and only
if) permits level a is greater than or equal to some level a5 ∈ (a3, a6). In other words, going
for the binding permits level alternative requires a < a5. Furthermore, the inequality constraint
allows to choose γ∗B if and only if permits level a is lower than some level a4 ∈ (a3, a5).
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If going for the non-binding permits level alternative, the gas supplier maximizes his profit
(γ − ψ) · G∗A(γ) subject to 2δK

√
K∗A + 2δG

√
G∗A ≤ a, i.e., subject to the permits level being

non-binding. The latter inequality constraint allows to choose γ∗A if and only if permits level a
is greater than or equal to some level a2 ∈ (0, a3).
Therefore, assuming that the gas supplier has a preference for a binding (in comparison to a
non-binding) permits level (if indifferent with respect to profits), the gas supplier goes for the
binding permits level alternative if and only if a ≤ a3. In other words, if a ≤ a3, then gas price
γ equals γ∗B and the permits level is binding. If a > a3, then gas price γ equals γ∗A, and the
permits level is non-binding.
In the latter case, the gas supplier’s profits are

ΓA :=
(γ∗A − ψ)(β0pKfG)2

Φ(γ∗A)2
=

(β0pKfG)2

4Φ · (β1pK + 2f2
K)

> 0,

and the resulting welfare level, which is independent of a and in the following referred to as
WM
A (q), equals that of the taxes regime (i.e., Wγ∗(p)) for tax level p = 0, and is thus lower than

its counterpart WM (q) in the taxes regime (where tax level p equals p∗ = q > 0).

Having analyzed the gas supplier’s decision, we continue with the regulator’s choice of the op-
timal permits level. If the permits level is binding, then welfare, as a function of permits level
a, can be calculated as

Wγ(a) :=
Ṽ2(γ) · a2 + Ṽ1(γ) · a+ Ṽ0(γ)

4β1Ψ(γ)
,

where Ṽ2(γ) := −β1Φ(γ) < 0, Ṽ1(γ) := 4β0β1(fKδKγ+ fGδGpK)− 4β1qΨ(γ), and Ṽ0(γ) := 4β2
0D

2 > 0.
It follows that the regulator’s welfare-maximizing permits level choice, if going for the binding
permits level alternative, is

â∗M (q) := min

{
a∗M (q) :=

2β0(fKδKψ + fGδGpK) + 2β0fK
β1δK

Ψ− 4qΨ

Φ + (β1pK + 2f2
K) Ψ

β1δ2
K

, a3

}
> 0,

and, in particular, higher than his welfare-maximizing permits level choice a∗C in the competitive
scenario. We comment on the latter result at the end of this section. The value of emission cost
q at which a∗M (q) equals a3 is positive and in the following referred to as q3.
If the regulator chooses permits level â∗M and the gas supplier gas price γ∗B, and if marginal
emission cost q is greater than or equal to q3 (and thus â∗M = a∗M ), then welfare equals

Wγ∗B
(a∗M ) = WM

B (q) :=
β1[β0(fKδKψ + fGδGpK) + β0fK

β1δK
Ψ− 2qΨ]2 + β2

0D
2(Φ + β1pK+2f2

K

β1δ2
K

Ψ)

2β1Ψ · (Φ + β1pK+2f2
K

β1δ2
K

Ψ)
,

and the gas supplier’s profits are

ΓB(q) := (γ∗B − ψ) · [2β0δK(−D) +Qa∗M ]2

4Ψ(γ∗B)2
=

β1δ
2
KΨ · (β0fGpK − qQ)2

[β1δ2
KΦ + (β1pK + 2f2

K)Ψ]2
> 0.

If q < q3 (and thus â∗M = a3 < a∗M ), then WM
B (q) is an upper boundary for the resulting welfare.

Comparing this welfare level to the one resulting from a non-binding permits level, we obtain

WM
A (q)

<
> WM

B (q) ⇔ q
>
< q̃(Q)

(on Q<0)
:=

β0pKfG(−Q)
2β1δ2

KΦ
.

Thus, the optimal binding emission permits level â∗M is welfare-superior to any non-binding
one (i.e., to any permits level above a3) if and only if marginal emission cost q exceeds level
q̃(Q) (> q3): Only if marginal emission cost q is sufficiently high, then the advantages of re-
stricting the electricity producer’s emissions in a binding manner, namely lower emission costs,
outweigh the corresponding changes in factor costs and electricity production (and thus in utility
from electricity consumption).
Lemma 2 in Appendix B confirms that (K∗B(γ∗B, a

∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M ) is the unique equilib-

rium in the monopolistic scenario of the emission permits regime wheneverQ < 0 and q > q̃(Q).17

17And, Lemma 4 confirms that there are parameter constellations allowing q to satisfy q̃(Q) < q < q̄.
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Proposition 3.1 summarizes our results.

Proposition 3.1
Suppose that Q < 0 and consider the monopolistic scenario of the emission permits regime.
a) If marginal emission cost q is greater than q̃(Q), then the regulator’s welfare-maximizing

permits level choice is a∗M , resulting in welfare level WM
B (q) and profits ΓB(q) for the gas

supplier. The regulator’s permits level choice is binding and higher than his choice a∗C in
the competitive scenario.

b) If q ≤ q̃(Q), then achievable welfare equals WM
A (q) (via choosing a non-binding permits level)

and is below that of the taxes regime, WM (q). The difference in achievable welfare between
the two regimes, WM (q)−WM

A (q), increases in marginal emission cost q (cf. Lemma 2.1e
in Appendix B) and equals WM (q)−WM

B (q) at q = q̃(Q). The gas supplier’s profits are ΓA.

According to case a) of Proposition 3.1, the regulator’s welfare-maximizing binding permits level
choice is higher in the monopolistic than in the competitive scenario. In order to understand
why this is the case, consider the different components of welfare, which is defined as the
difference between utility from electricity consumption and factor plus emission costs. As we
have seen, for (γ, a) equal to (ψ, a∗C) or (γ∗B, â

∗
M ), factor inputs for coal and gas equal K∗B(a, γ)

and G∗B(a, γ), respectively, and electricity demand equals E∗(a, γ) = F (K∗(a, γ), G∗(a, γ)) =
Ψ(γ)−1[2β0D

2 + β1a(fKδKγ + fGδGpK)]. If in the monopolistic scenario the permits level were
chosen to be a∗C (< â∗M ) instead of â∗M , then the resulting factor inputs for coal and gas would
equal K∗(a∗C , γ

∗
B) < K∗(â∗M , γ

∗
B) and G∗(a∗C , γ

∗
B) > G∗(â∗M , γ

∗
B), respectively, and electricity

demand would equal E∗(a∗C , γ
∗
B) < E∗(â∗M , γ

∗
B). Therefore, by allowing the electricity producer

more emissions in the monopolistic scenario (via choosing â∗M instead of a∗C), the regulator is
responsible for higher emission costs (since permits level â∗M is binding) and higher factor costs for
coal (pK ·K∗(â∗M , γ∗B) > pK ·K∗(a∗C , γ∗B)). However, the higher emission permits level implies, at
the same time, a higher electricity demand and thus a higher utility from electricity consumption
as well as lower factor costs for gas (γ∗B · G∗(â∗M , γ∗B) < γ∗B · G∗(a∗C , γ∗B)). As Proposition 3.1
states, this second effect overcompensates the higher costs with respect to emissions and coal.

5.2 The Case of a Low Difference in Per-Unit-of-Electricity Emissions

Suppose now that Q > 0, and note that equilibrium factor inputs (as functions of gas price γ
and permits level a) do not change: Factor inputs (K,G) equal (K∗A, G

∗
A) in the non-binding

and (K∗B, G
∗
B) in the binding case. The role of a higher/lower permits level a in gas demand

G∗B, however, reverses. In particular, curve CB( · ), which reflects the gas supplier’s achievable
profits in case of a binding permits level, is now increasing in and positive on a ≥ 0, and also
a2 > a4 > a5 > 0. Figure 4 illustrates the two curves CB( · ) and CA( · ) in case of Q > 0.

If going for the non-binding permits level alternative, the gas supplier maximizes his profit
(γ−ψ) ·G∗A(γ) subject to 2δK

√
K∗A + 2δG

√
G∗A ≤ a. The latter inequality constraint allows for

a non-negative gas price γ if and only if a > a5. And, if a > a5, then the inequality constraint
is equivalent to

γ ≥ γ̂(a) :=
a · 2f2

GpK − 2β0fGδGpK
2β0δKfK − a · (β1pK + 2f2

K)
,

which allows to choose gas price γ∗A if and only if permits level a is greater than or equal
to a2 (γ̂(a2) = γ∗A), resulting in profit C̄A for the gas supplier. If a ∈ (a5, a2), then the
gas supplier’s profit is maximized by choosing γ̂(a), and his corresponding profit is Γ̂A(a) :=
(γ̂(a)− ψ) ·G∗A(γ̂(a)) > 0. Γ̂A( · ) is a concave quadratic function of a, which obtains its maxi-
mum C̄A at a2 and equals CB(a4) at a4.
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If going for the binding permits level alternative, the gas supplier maximizes (γ−ψ) ·G∗B(γ) sub-
ject to 2δK

√
K∗A+2δG

√
G∗A > a, i.e., subject to the permits level being binding. The inequality

constraint allows for a non-negative gas price γ if and only if permits level a is lower than some
level a0 > a2. And, if a < a0, then the inequality constraint is equivalent to γ < γ̂(a), which
allows to choose gas price γ∗B if and only if a is lower than a4 (γ̂(a4) = γ∗B), resulting in profit
CB(a) for the gas supplier. If a ∈ [a4, a0), then the gas supplier’s achievable profit is lower than
(γ̂(a)− ψ) ·G∗B(γ̂(a)), which equals Γ̂A(a).
Since Γ̂A(a) is below CB(a) on a < a4 and below C̄A on a > a2, it follows that the gas supplier
goes for the binding permits level alternative if and only if a < a4. In other words, if a < a4,
then gas price γ equals γ∗B and the permits level is binding. If a ∈ [a4, a2] or a ≥ a2, then gas
price γ equals γ̂(a) or γ∗A, respectively, and the permits level is non-binding.

Having analyzed the gas supplier’s decision, we continue with the regulator’s choice of the op-
timal permits level.
If the emission permits level is non-binding and a ≥ a2, then the gas supplier’s profits are ΓA > 0
and the resulting welfare level, which is independent of a, equals that of the taxes regime for
tax level p = 0 and thus WM

A (q). In particular, it is lower than its counterpart WM (q) in the
taxes regime (where tax level p equals p∗ = q > 0).
If the emission permits level is non-binding and a ∈ [a4, a2], then welfare, as a function of per-
mits level a, can be calculated as

ŴM (a) :=
W̃0(γ̂(a))

2β1Φ(γ̂(a))
=

2β2
0fKD + β1(β0fGpK − 2Qq) · a

2β1Q
.

It follows that, whenever β0fGpK − 2Qq < 0, the regulator’s welfare-maximizing permits level
choice, if going for the non-binding permits level alternative, is a4. The resulting welfare level
ŴM (a4) is in the following denoted by ŴM

A (q). If, on the other hand, q is lower than or equal
to β0fGpK

2Q , then any a ≥ a2 or any a ≥ a4, respectively, maximizes welfare, resulting in welfare

level WM
A (q) (= ŴM (a2)).

If the emission permits level is binding, then welfare, as a function of permits level a, equals
Wγ(a), and the regulator’s welfare-maximizing permits level choice, if going for the binding
permits level alternative, is

a∗M (q) def= a4 − 4Ψ ·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ
)−1

(< a4),

resulting in welfare level WM
B (q) and profits ΓB(q) for the gas supplier. Since Q > 0, now the

regulator’s permits level choice is lower than his choice a∗C in the competitive scenario.
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Comparing the different welfare levels, we obtain ŴM
A (q) < WM

B (q) and

WM
A (q)

<
> WM

B (q) ⇔ q
>
< q̃(Q)

(on Q>0)
:=

β0pKfGQ

2(β1pK + 2f2
K)Ψ

.

Thus, if marginal emission cost q exceeds level q̃(Q), then the regulator’s welfare-maximizing
permits level choice is a∗M , the emission permits level is binding, and the resulting welfare level
equals WM

B (q). If q < q̃(Q), which implies that q < β0fGpK
2Q , then any permits level a ≥ a2

maximizes welfare, is non-binding, and results in welfare level WM
A (q). If q = q̃(Q), which also

implies that q < β0fGpK
2Q , then welfare is maximized by choosing either a∗M (resulting in a binding

permits level) or any level a ≥ a2 (resulting in a non-binding permits level), and the resulting
welfare equals WM

B (q) = WM
A (q).

Lemma 2 in Appendix B confirms that (K∗B(γ∗B, a
∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M ) is the unique equilib-

rium in the monopolistic scenario of the emission permits regime wheneverQ > 0 and q > q̃(Q).18

Proposition 3.2 summarizes our results.

Proposition 3.2
Suppose Q > 0 and consider the monopolistic scenario of the emission permits regime.
a) If marginal emission cost q is greater than q̃(Q), then the regulator’s welfare-maximizing

permits level choice is a∗M , resulting in welfare level WM
B (q) and profits ΓB(q) for the gas

supplier. The regulator’s permits level choice is binding and lower than his choice a∗C in the
competitive scenario.

b) If q ≤ q̃(Q), then achievable welfare equals WM
A (q) and is below that of the taxes regime,

WM (q). The difference in achievable welfare between the two regimes, WM (q) −WM
A (q),

increases in q (cf. Lemma 2.2e in Appendix B) and equals WM (q) −WM
B (q) at q = q̃(Q).

The gas supplier’s profits equal ΓA.

5.3 The Borderline Case (Q = 0)

Suppose that Q = 0, and note that equilibrium factor inputs (as functions of γ and a) again
equal (K∗A, G

∗
A) in the non-binding and (K∗B, G

∗
B) in the binding case. Since Q = 0, gas demand

G∗B is now independent of the regulator’s permits level choice, curve CB( · ) is constant in a and
equals C̄A, and a0 = a1 = a2 = a4 = a5.

If going for the binding permits level alternative, the gas supplier maximizes (γ − ψ) · G∗B(γ)
subject to 2δK

√
K∗A + 2δG

√
G∗A > a. The inequality constraint allows for a non-negative gas

price γ if and only if a < a5, and allows to choose gas price γ∗B if and only if a < a4 (= a5),
resulting in profit C̄A for the gas supplier.
If going for the non-binding permits level alternative, the gas supplier maximizes (γ−ψ) ·G∗A(γ)
subject to 2δK

√
K∗A + 2δG

√
G∗A ≤ a. The latter inequality constraint is satisfied for all γ ≥ 0

if a ≥ a5, and allows for a positive gas price γ if and only if a ≥ a5.
It follows that the gas supplier goes for the binding alternative (via choosing γ∗B) if a < a5, and
for the non-binding alternative (via choosing γ∗A) if a ≥ a5. His profit is ΓA = C̄A in either case.

As before, if the emission permits level is non-binding, then the resulting welfare level equals that
of the taxes regime for tax level p = 0 and thus WM

A (q). If the permits level is binding, then wel-
fare, as a function of permits level a, equals Wγ(a), and the regulator’s welfare-maximizing per-
mits level choice, if going for the binding alternative, is a∗M (q), resulting in welfare level WM

B (q).

18And, Lemma 4 confirms that there are parameter constellations allowing q to satisfy q̃(Q) < q < q̄.
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Since Q = 0, a∗M (q) equals his choice a∗C in the competitive scenario, and WM
B (q) > WM

A (q) for
all q > q̃(0) := 0. Lemma 2 in Appendix B confirms that (K∗B(γ∗B, a

∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M ) is

the unique equilibrium in the monopolistic scenario of the emission permits regime if Q = 0.

Proposition 3.3
If, in the monopolistic scenario of the emission permits regime, Q = 0, then the regulator’s
welfare-maximizing permits level choice is a∗M , resulting in welfare level WM

B (q) and profits
ΓB(q) = ΓA for the gas supplier. The regulator’s permits level choice is binding and equals his
choice a∗C in the competitive scenario.

6 Permits versus Taxes

From Proposition 3.1b and 3.2b we already know that in the monopolistic scenario taxes are
welfare-superior whenever marginal emission cost q is sufficiently low: If q ≤ q̃(Q) (which im-
plies Q 6= 0), then any non-binding permits level choice provides for at least the same welfare as
the optimal binding permits level, and for less welfare than the optimal tax level. The follow-
ing result, Proposition 4, which is based on Lemma 3a in Appendix B, implies that taxes are
welfare-maximizing for all q. In particular, Proposition 4 compares the resulting welfare in case
of an optimal binding permits level (cf. Proposition 3.1a, 3.2a and 3.3) with the welfare level
achievable in an emission taxes regime, and shows that the gas supplier’s ability to optimally
respond to the regulator’s choice makes it impossible for a binding permits level to result in a
higher welfare level than the regulator’s optimal tax choice.

Proposition 4 (Welfare in the Monopolistic Scenario)
Suppose that, in the monopolistic scenario, marginal emission cost q is greater than q̃(Q). Then
the difference in welfare between the unique equilibrium of the taxes regime and the unique
(and binding permits level) equilibrium of the permits regime, namely WM (q)−WM

B (q), is non-
negative; the difference is greater than zero if and only if Q 6= 0, it is increasing in marginal
emission cost q if Q < 0 and decreasing in q if Q > 0.

Combining our findings from Proposition 3.1b and 3.2b for the case q ≤ q̃(Q) and from Propo-
sition 4 covering marginal emission costs greater than q̃(Q), we obtain the following result.

Corollary Whenever Q 6= 0, (K∗(γ∗, p∗), G∗(γ∗, p∗), γ∗, p∗, ”taxes”) is the unique equilibrium
of the four-stage game starting with the regulator’s regime choice. Only if Q = 0, then both
(K∗(γ∗, p∗), G∗(γ∗, p∗), γ∗, p∗, ”taxes”) and (K∗B(γ∗B, a

∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M , ”permits”) con-

stitute an equilibrium of the four-stage game starting with the regulator’s regime choice.

In particular, if the difference between coal-based and gas-based per-unit-of-electricity emissions
is high such that Q < 0, then the difference in achievable welfare between the two regimes
increases in the marginal welfare costs of emissions: Taxes are welfare-superior and the higher
marginal emission cost q, the greater is this superiority. If the difference between coal-based and
gas-based per-unit-of-electricity emissions is low such that Q > 0, then taxes are welfare-superior
and the difference in achievable welfare between the two regimes increases in low and decreases
in high values of q.
We close our analysis and comparison of the two regimes with an evaluation of the gas supplier’s
profits in Proposition 5, which is based on Lemma 3b in Appendix B. In particular, Proposition
5 compares the respective profits for the gas supplier outlined in Proposition 3.1 to 3.3 across
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all possible equilibria of the two regimes. The subsequent corollary highlights the main result.

Proposition 5 (The Gas Supplier’s Profits in the Monopolistic Scenario)
If, in the monopolistic scenario, q ≥ q̃(Q), then the difference in the resulting gas supplier’s prof-
its between the unique equilibrium of the taxes regime and the binding permits level equilibrium,
(K∗B(γ∗B, a

∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M ), namely Γ(q)−ΓB(q), is non-negative; it is greater than zero

if and only if Q 6= 0. If q ≤ q̃(Q) (which implies Q 6= 0), then the difference in the resulting
gas supplier’s profits between the unique equilibrium of the taxes regime and any non-binding
permits level equilibrium of the permits regime, namely Γ(q)− ΓA, is greater than zero.

Corollary In the monopolistic scenario, whenever Q 6= 0, then the gas supplier’s profits in
the unique equilibrium of the emission taxes regime are higher than his profits would be in any
equilibrium of the emission permits regime. Only if Q = 0, then his profits in the unique equi-
librium of the emission taxes regime and the unique (and binding permits level) equilibrium of
the permits regime are the same.

Summarizing our final results about the monopolistic scenario, taxes are the regulator’s welfare-
maximizing regime choice whenever Q 6= 0; in addition, maximizing welfare in the emission taxes
regime implies higher profits for the gas supplier than maximizing welfare in the emission per-
mits regime. And even if the difference between coal-based and gas-based per-unit-of-electricity
emissions is such that Q = 0, taxes guarantee for the same welfare and result in the same profits
for the gas supplier as permits.

A Remarks

In order to see that, as suggested in Section 2, the price equilibrium in the market for permits
reduces to a quantity constraint and that a positive equilibrium permits price corresponds to a
binding quantity constraint, suppose that, without loss of generality, there is only one electric-
ity producer (instead of considering several identical producers), whose choice of factor inputs
(K,G) ∈ R++ maximizes Π(K,G) := ω ·F (K,G)−pK ·K−γ ·G−P ·e(K,G), taking as given the
equilibrium price for electricity and for permits. Then, the electricity producer’s corresponding
profit-maximizing input combination (K(ω, P ), G(ω, P )) satisfies ∂Π

∂K = ∂Π
∂G = 0, which implies√

K(ω, P ) = ωfK−δKP
pK

and
√
G(ω, P ) = ωfG−δGP

γ . Market clearing in the market for electric-
ity requires E(ω) = β0 − β1ω = 2fK

√
K(ω, P ) + 2fG

√
G(ω, P ) = F (K(ω, P ), G(ω, P )), i.e.,

ω = ω∗(P ) := β0pKγ+2fKδKPγ+2fGδGpKP
Φ(γ) . Defining

K∗(P ) := K(ω∗(P ), P ) =
(
β0γfK − P R(γ)

Φ(γ)

)2

and G∗(P ) := G(ω∗(P ), P ) =
(
β0pKfG − P Q

Φ(γ)

)2

(for the latter equalities, cf. Lemma 1a in Appendix B), market clearing in the market for
permits requires e(K∗(P ), G∗(P )) = a, which implies P = P ∗ := 2β0(fKδKγ+fGδGpK)−aΦ(γ)

2Ψ(γ) . Note
that P ∗ > 0 if and only if

a < 2δK
β0γfK
Φ(γ)

+ 2δG
β0pKfG

Φ(γ)
,

and that the latter condition characterizes a binding permits level in Appendix B, Lemma 2.1
to 2.3. Defining ω∗ := ω∗(P ∗), we have that factor inputs equal

K(ω∗, P ∗) =
(

2β0δGD + aR(γ)
2Ψ(γ)

)2

and G(ω∗, P ∗) =
(

2β0δK(−D) + aQ

2Ψ(γ)

)2

,

respectively, i.e., factor inputs equal those of Lemma 2.1b to 2.3b, where the electricity producer’s
choice of factor inputs (K,G) ∈ R++ maximizes Π(permits)(K,G) def= ω · F (K,G)− pK ·K − γ ·
G subject to e(K,G) ≤ a and the permits level is assumed to be binding.
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B Lemmata and Proofs

Lemma 1 (Equilibria in the Emission Taxes Regime)
In any equilibrium of the emission taxes regime,
a) factor inputs K and G equal

K∗ def=
(
β0γfK − pR(γ)

Φ(γ)

)2

and G∗ def=
(
β0pKfG − pQ

Φ(γ)

)2

,

respectively, whenever (p, γ) satisfies β0γfK − pR(γ) > 0 and β0pKfG − pQ > 0.
b) In the monopolistic scenario, gas price γ equals

γ∗
def=

Φ
β1pK + 2f2

K

+ ψ

(and is, in particular, independent of the regulator’s tax level choice p) whenever p < β0γ∗fK
R(γ∗)

and β0pKfG − pQ > 0.
c) Welfare, whenever (p, γ) satisfies β0γfK − pR(γ) > 0 and β0pKfG − pQ > 0, can be calcu-

lated as
Wγ(p) def=

W̃2(γ) · p2 + W̃1(γ) · p+ W̃0(γ)
2β1Φ(γ)

,

where W̃2(γ) def= −2β1Ψ(γ), W̃1(γ) def= 4β1qΨ(γ), and W̃0(γ) def= 2β0[β0(f2
Kγ+f2

GpK)−2β1q(fKδKγ+

δGfGpK)]. It follows that the regulator’s welfare-maximizing tax level choice is p∗ def= q, i.e.,
equals the marginal welfare costs of emissions, independent of the scenario.
Refining our representation of Wγ(p), we obtain that Wγ(p) · 2β1Φ(γ)2 equals

− (2β1)2(fKδKγ + fGδGpK)2 · p2 − 4β0β1(fKδKγ + fGδGpK)β1pKγ · p
+ (2β0)2(f2

Kγ + f2
GpK)(β1pKγ + f2

Kγ + f2
GpK)

−
[
2β1(pKR(γ)2 + γQ2) · p2 − (4β0β1pKγ(fKR(γ) + fGQ) + 4β1qΦ(γ)(δKR(γ) + δGQ)) · p
+ 2β1pKγβ

2
0(γf2

K + pKf
2
G) + 4β1qβ0Φ(γ)(fKδKγ + fGδGpK) ] ,

where the first quadratic function of p reflects the utility from electricity consumption and
the second quadratic function of p reflects the sum of factor and emission costs.

d) Welfare in the monopolistic and competitive scenario equals

WM (q) def=
W̃M

2 · q2 + W̃M
1 · q + W̃M

0

2β1Φ
and WC(q) def=

W̃C
2 · q2 + W̃C

1 · q + W̃C
0

β1Φ
,

respectively, where W̃C
0 := β2

0(f2
Kψ + f2

GpK), W̃C
1 := −2β1β0(fKδKψ + fGδGpK), W̃C

2 := β1Ψ,
W̃M

0
def= β2

0(f2
Kψ+ f2

GpK + f2
KΦ

β1pK+2f2
K

), W̃M
1

def= −2β1β0(fKδKψ+ fGδGpK + fKδKΦ
β1pK+2f2

K
), and W̃M

2
def=

β1(Ψ + β1δ
2
K

β1pK+2f2
K

Φ). Note that

WM
p=0(q) :=

W̃M
1 · q + W̃M

0

2β1Φ
and WC

p=0(q) :=
W̃C

1 · q + W̃C
0

β1Φ
equals the resulting welfare in case of no regulation (p = 0), respectively. In the monopolistic
scenario, the gas supplier’s profits are

Γ(q) def= (γ∗ − ψ) ·G∗(γ∗, p∗) =
(β0pKfG − qQ)2

4Φ · (β1pK + 2f2
K)

> 0.

Summarizing, (K∗(p∗), G∗(p∗), p∗) is the unique equilibrium in the competitive scenario, and
(K∗(γ∗, p∗), G∗(γ∗, p∗), γ∗, p∗) is the unique equilibrium in the monopolistic scenario of the emis-
sion taxes regime.

Proof of Lemma 1
a) The electricity producer’s profit maximization results in (K(ω), G(ω)) ∈ arg max(K,G)∈R2

++

Π(taxes)(K,G). In particular, (K(ω), G(ω)) satisfies ∂Π(taxes)

∂K = ∂Π(taxes)

∂G = 0, which implies√
K(ω) = ωfK−δKp

pK
and

√
G(ω) = ωfG−δGp

γ . Market clearing requires E(ω) = β0 − β1ω =

2fK
√
K(ω) + 2fG

√
G(ω) = F (K(ω), G(ω)), i.e., ω = ω∗ := β0pKγ+2fKδKpγ+2fGδGpKp

Φ(γ) (and

E(ω∗) = 2β0(f2
Kγ+f2

GpK)−2β1p(fKδKγ+fGδGpK)

Φ(γ) ). And,
√
K(ω∗) = ω∗fK−δKp

pK
=
√
K∗ and√

G(ω∗) = ω∗fG−δGp
γ =

√
G∗.
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b) The gas supplier’s profits are well-defined and given by

(γ − ψ) ·G∗(γ) =
(γ − ψ)(β0pKfG − pQ)2

Φ(γ)2

whenever β0pKfG − pQ > 0 and both p < β0fK
β1δK

and γ > 2fG(−D)p
β0fK−β1δKp

(⇔ β0γfK − pR(γ) >

0 ⇔ p < β0γfK
R(γ) ). Considering the first derivative with respect to gas price γ, and, in

particular, noting that [(β1pK + 2f2
K)γ + 2f2

GpK ]− (γ − ψ)2(β1pK + 2f2
K) = 0 is equivalent

to γ = γ∗, the profit curve (considered as a function of γ) obtains its maximum at γ∗, it is
increasing on γ < γ∗ and decreasing on γ > γ∗. If β0pKfG − pQ > 0 and both p < β0fK

β1δK

and γ∗ > 2fG(−D)p
β0fK−β1δKp

, then γ∗ maximizes the gas supplier’s profits over all alternatives

with a well-defined outcome (i.e., over all γ > 2fG(−D)p
β0fK−β1δKp

, γ ≥ ψ). If β0pKfG − pQ > 0,

p < β0fK
β1δK

, and γ∗ ≤ 2fG(−D)p
β0fK−β1δKp

, then the gas supplier’s profits cannot be maximized over

all alternatives with a well-defined outcome (i.e., over all γ > 2fG(−D)p
β0fK−β1δKp

(> ψ)).

c) The calculation of Wγ(p) is standard (cf. Appendix C). Noting that ∂Wγ(p)
∂p = 0 is equivalent

to the tax level being equal to −W̃1(γ)

2W̃2(γ)
= −4β1qΦ(γ)Ψ(γ)
−4β1Ψ(γ)Φ(γ) = q, Wγ(p) obtains its maximum at

q. In the competitive scenario, since q < q̄ and (consequently) β0pKfG− qQ > 0, tax level q
maximizesWψ(p) over all p with a well-defined outcome (i.e., over all p with β0pKfG−pQ > 0
and p < β0fKψ

R ). In the monopolistic scenario, since gas price γ∗ is independent of the
regulator’s tax level choice p, and since q < q̄

def= β0fKψ
R ≤ β0fKγ

∗

R(γ∗) and β0pKfG − qQ > 0,
tax level q maximizes Wγ∗(p) over all p with a well-defined outcome (i.e., over all p with
β0pKfG − pQ > 0 and p < β0fKγ

∗

R(γ∗) ).
d) All welfare levels follow immediately from the representation of Wγ(p), noting that Φ(γ∗) =

2Φ and Ψ(γ∗) = Ψ + β1δ2
K

β1pK+2f2
K

Φ.
2

Lemma 2.1 (Necessary Conditions for Equilibria in the Emission Permits Regime if Q < 0)
Assuming that any indifference of the gas supplier is resolved according to a preference for
a binding (in comparison to a non-binding) emission permits level and that this is common
knowledge, in any equilibrium of the emission permits regime in case of Q < 0,
a) factor inputs K and G equal

K∗
A

def=
(
β0γfK
Φ(γ)

)2

and G∗
A

def=
(
β0pKfG

Φ(γ)

)2

,

respectively, if the emission permits level is non-binding, and
b) factor inputs K and G equal

K∗
B

def=
(

2β0δGD + aR(γ)
2Ψ(γ)

)2

and G∗
B

def=
(

2β0δK(−D) + aQ

2Ψ(γ)

)2

,

respectively, if the emission permits level is binding and (γ, a) satisfies 2β0δGD+aR(γ) > 0
and 2β0δK(−D) + aQ > 0.

c) In the monopolistic scenario, if

a ∈

(
a−1 :=

2β0δG(−D)
R(γ∗B)

, a3 :=
2β0δKD

Q
− 2β0pKfG

−Q
·

√
Ψ
Φ
·

β1δ2
K

β1pK + 2f2
K

]
,

then the permits level is binding and gas price γ equals
γ∗B

def=
Ψ

β1δ2
K

+ ψ.
If a > a3, then gas price γ equals

γ∗A
def=

Φ
β1pK + 2f2

K

+ ψ,

the gas supplier’s profits are
ΓA

def=
(γ∗A − ψ)(β0pKfG)2

Φ(γ∗A)2
=

(β0pKfG)2

4Φ · (β1pK + 2f2
K)

> 0,

and the permits level is non-binding.
d) In the competitive scenario, where gas price γ equals ψ, (it is obvious that) permits level a is

non-binding if a ≥ a1 := 2δK β0ψfK
Φ + 2δGβ0pKfG

Φ and binding if a ∈
(

2β0δG(−D)
R , a1

)
(6= ∅).
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e) If the emission permits level is non-binding, then (it is obvious that) the welfare levels equal
those of the taxes regime for tax level p = 0, i.e., WC

A (q) = WC
p=0(q) and WM

A (q) = WM
p=0(q)

in the competitive and monopolistic scenario, respectively (cf. Lemma 1). In particular,
they are below their respective counterparts in the taxes regime (where p = p∗ = q > 0).

f) If the emission permits level is binding, then welfare, whenever 2β0δGD + aR(γ) > 0 and
2β0δK(−D) + aQ > 0 (⇔ a < a6 := 2β0δKD

Q ), can be calculated as

Wγ(a) def=
Ṽ2(γ) · a2 + Ṽ1(γ) · a+ Ṽ0(γ)

4β1Ψ(γ)
,

where Ṽ2(γ) def= −β1Φ(γ), Ṽ1(γ) def= 4β0β1(fKδKγ + fGδGpK) − 4β1qΨ(γ), and Ṽ0(γ) def= 4β2
0D

2. It
follows that the regulator’s welfare-maximizing permits level choice, if going for the binding
permits level alternative, is

a∗C(q) def=
2β0(fKδKψ + fGδGpK)− 2qΨ

Φ
= a1 −

2Ψ
Φ
q ∈

(
2β0δG(−D)

R
, a1

)
in the competitive and

â∗M (q) def= min

a∗M (q) def=
2β0(fKδKψ + fGδGpK) + 2β0fK

β1δK
Ψ− 4qΨ

Φ + β1pK+2f2
K

β1δ2
K

Ψ
, a3

 ∈ (a−1, a3]

in the monopolistic scenario.
In particular, the regulator’s permits level choice is higher in the monopolistic as compared
to the competitive scenario. And,

a∗M (q) = a4 −
4Ψ

Φ + β1pK+2f2
K

β1δ2
K

Ψ
q

equals a3 at

q = q3 :=
β0pKfG

2Ψ · (−Q)
·

[√
Ψ
Φ
·

β1δ2
K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ
)
− 2Ψ

]
> 0.

If the regulator goes for the binding permits level alternative, then welfare in the competitive
scenario (γ = ψ, a = a∗C) equals

WC
B (q) def=

1
β1ΨΦ

[
β1(β0(fKδKψ + fGδGpK)− qΨ)2 + β2

0D
2Φ
]
.

In the monopolistic scenario (γ = γ∗B, a = â∗M ), if q ≥ q3 (and thus â∗M = a∗M ), welfare equals

WM
B (q) def=

β1[β0(fKδKψ + fGδGpK) + β0fK
β1δK

Ψ− 2qΨ]2 + β2
0D

2(Φ + β1pK+2f2
K

β1δ2
K

Ψ)

2β1Ψ · (Φ + β1pK+2f2
K

β1δ2
K

Ψ)
,

and the gas supplier’s profits are

ΓB(q) def= (γ∗B − ψ) · [2β0δK(−D) +Qa∗M ]2

4Ψ(γ∗B)2
=

β1δ
2
KΨ · (β0fGpK − qQ)2

[β1δ2
KΦ + (β1pK + 2f2

K)Ψ]2
> 0.

If q < q3 (and thus â∗M = a3 < a∗M ), welfare is no higher than WM
B (q), and the gas supplier’s

profits are
(γ∗B − ψ) · [2β0δK(−D) +Qa3]2

4Ψ(γ∗B)2
= ΓA > 0.

g) In the competitive scenario, WC
B (q) > WC

A (q). Therefore, the regulator’s welfare-maximizing
permits level choice is a∗C , and the emission permits level is binding.

h) In the monopolistic scenario, WM
A (q)

<
> WM

B (q) ⇔ q
>
< q̃(Q) def= β0pKfG(−Q)

2β1δ2
KΦ

(> q3).
Therefore, if q > q̃(Q), then the regulator’s welfare-maximizing permits level choice is â∗M =
a∗M , the emission permits level is binding, and the welfare level equals WM

B (q). If q < q̃(Q),
any permits level above a3 maximizes welfare and, in particular, is non-binding, and the
welfare level equals WM

A (q). If q = q̃(Q), then welfare is maximized by choosing either
â∗M = a∗M (resulting in a binding permits level) or any level above a3 (resulting in a non-
binding permits level), and the welfare level equals WM

B (q) = WM
A (q).
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Proof of Lemma 2.1
a) The electricity producer’s profit maximization results in (K(ω), G(ω)) ∈ arg max(K,G)∈R2

++

Π(taxes)
p=0 (K,G), Π(taxes)

p=0 (K,G) := ω F (K,G) − pK K − γ G. In particular, (K(ω), G(ω))

satisfies
∂Π

(taxes)
p=0

∂K = 0 and
∂Π

(taxes)
p=0

∂G = 0, which implies
√
K(ω) = ωfK

pK
and

√
G(ω) = ωfG

γ .
Market clearing requires E(ω) = β0 − β1ω = 2fK

√
K(ω) + 2fG

√
G(ω) = F (K(ω), G(ω)),

i.e., ω = ω∗A := β0pKγ
Φ(γ) (and E(ω∗A) = 2β0(f2

Kγ+f2
GpK)

Φ(γ) ). And,
√
K(ω∗A) = ω∗AfK

pK
=
√
K∗A and√

G(ω∗A) = ω∗AfG
γ =

√
G∗A.

b) The electricity producer’s profit maximization results in (K(ω), G(ω)) ∈ arg max(K,G)∈R2
++

Π(permits)(K,G) subject to e(K,G) ≤ a. In particular, there exists a multiplier λ ∈ R++

such that ∂Π(permits)

∂K = λ ∂e
∂K and ∂Π(permits)

∂G = λ ∂e
∂G , which implies

√
K(ω) = ωfK−δKλ

pK
and√

G(ω) = ωfG−δGλ
γ . Since e(K(ω), G(ω)) = a, we have that 2δKγ(ωfK−δKλ)+2δGpK(ωfG−

δGλ) = apKγ, which is equivalent to λ = 2δKγωfK+2δGpKωfG−apKγ
2δ2
Kγ+2δ2

GpK
. Thus,

√
K(ω) =

ωfK−δKλ
pK

= ωfK2δ2
G−2δGδKωfG+aδKγ

2δ2
Kγ+2δ2

GpK
,
√
G(ω) = ωfG−δGλ

γ = ωfG2δ2
K−2δGδKωfK+aδGpK

2δ2
Kγ+2δ2

GpK
, and

market clearing requires E(ω) = β0 − β1ω = 2fK
√
K(ω) + 2fG

√
G(ω) = F (K(ω), G(ω)),

i.e., ω = ω∗B := β0(δ2
Kγ+δ2

GpK)−a(fKδKγ+fGδGpK)

Ψ(γ) (and E(ω∗B) = 2β0D2+β1a(fKδKγ+fGδGpK)
Ψ(γ) ). It

follows that K(ω∗B) = K∗B and G(ω∗B) = G∗B.
c) First, note that the gas supplier’s profits in case of a binding permits level are given by

(γ − ψ) ·G∗
B(γ) =

(γ − ψ)[2β0δK(−D) + aQ]2

4Ψ(γ)2
.

Considering the first derivative with respect to gas price γ, and, in particular, noting that
[β1(δ2

Kγ+δ2
GpK)+2D2]−(γ−ψ)2β1δ

2
K = 0 is equivalent to γ = γ∗B, the profit curve (consid-

ered as a function of γ) obtains its maximum at γ∗B, it is increasing on γ < γ∗B and decreas-
ing on γ > γ∗B. For γ = γ∗B, the profit curve (considered as a function of a) equals CB( · ),
CB(a) := Ψ

β1δ2
K
· [2β0δK(−D)+aQ]2

4(2Ψ)2 , noting that Ψ(γ∗B) = 2Ψ and Φ(γ∗B) = Φ + β1pK+2f2
K

β1δ2
K

Ψ.

Curve CB( · ) is a quadratic function of a, it obtains its minimum value 0 at a6
def= 2β0δKD

Q ,
it is decreasing on a < a6 and increasing on a > a6.
The gas supplier’s profits in case of a non-binding permits level are given by

(γ − ψ) ·G∗
A(γ) =

(γ − ψ) · (β0pKfG)2

Φ(γ)2
.

This curve (considered as a function of γ) obtains its maximum at γ∗A, it is increasing on
γ < γ∗A and decreasing on γ > γ∗A (cf. the proof of Lemma 1b). For γ = γ∗A, this curve
(considered as a function of a) is constant in a and equals C̄A := Φ

(β1pK+2f2
K)
· (β0pKfG)2

(2Φ)2 .
If going for the binding permits level alternative, profit is maximized by choosing γ(a) ∈
arg maxγ∈[ψ,∞)(γ−ψ) ·G∗B(γ) subject to 2δK

√
K∗A + 2δG

√
G∗A > a, i.e., subject to the per-

mits level being binding (cf. part a) of Lemma 2.1). First, note that going for the binding
permits level alternative requires a < a5 := 2β0fKδK

β1pK+2f2
K

, since otherwise the inequality con-
straint cannot be satisfied for γ ≥ 0: If a > a5, then the inequality constraint is equivalent
to γ < γ̂(a),

γ̂(a) def=
a · 2f2

GpK − 2β0fGδGpK
2β0δKfK − a · (β1pK + 2f2

K)
,

the fraction on the right-hand side being lower than zero (since the numerator is positive
and the denominator negative), and if a = a5, then the inequality constraint is equivalent
to −Q < 0, contradicting Q < 0. Note that, in particular, since a5 < a6 (cf. Appendix C),
a < a5 implies that a < a6, which is equivalent to 2β0δK(−D) + aQ > 0. If a < a5, then
the inequality constraint 2δK β0γfK

Φ(γ) + 2δGβ0pKfG
Φ(γ) > a is equivalent to γ > γ̂(a). If a < a4 :=

2δK
β0γ∗BfK
Φ(γ∗B) +2δGβ0pKfG

Φ(γ∗B) = [2β0(fKδKψ+fGδGpK)+2β0fK
β1δK

Ψ] · (Φ+ β1pK+2f2
K

β1δ2
K

Ψ)−1 (< a5, cf.
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Appendix C), and if a > a−1
def= 2β0δG(−D)

R(γ∗B) = 2β0δG(−D)

R+ Ψ
δK

(< a0, cf. Appendix C), then the gas

supplier’s profit (if going for the binding alternative) is maximized over all alternatives with
a well-defined outcome (i.e., over all γ > 2(−D)(β0δG−fGa)

β1δKa
, γ ≥ ψ) by choosing γ(a) = γ∗B,

and his corresponding profit is CB(a); if a ∈ [a4, a5), then obviously the gas supplier’s
achievable profit cannot be higher than CB(a). If a ≤ a−1, then the gas supplier’s profit
(if going for the binding alternative) cannot be maximized over all alternatives with a well-
defined outcome (i.e., over all γ > 2(−D)(β0δG−fGa)

β1δKa
(> ψ)).

If going for the non-binding permits level alternative, profit is maximized by choosing γ(a) ∈
arg maxγ∈[ψ,∞)(γ−ψ)·G∗A(γ) subject to 2δK

√
K∗A+2δG

√
G∗A ≤ a, i.e., subject to the permits

level being non-binding. First, note that the inequality constraint is satisfied for all γ ≥ 0 if
a ≥ a5. If a < a5, then the constraint cannot be satisfied for γ > 0 if a ≤ a0

def= β0δG
fG

(< a5,

cf. Appendix C), and the constraint is equivalent to γ ≤ γ̂(a) (> 0) if a > a0. In the
latter case, i.e., a ∈ (a0, a5), the interval of available gas prices is bounded from above by
an increasing function of permits level a (cf. Appendix C), that allows the gas supplier
to choose (gas price ψ exactly on a ≥ a1

def= 2δK β0ψfK
Φ + 2δGβ0pKfG

Φ , and) gas price γ∗A

exactly on a ≥ a2 := 2δK
β0γ∗AfK
Φ(γ∗A) + 2δGβ0pKfG

Φ(γ∗A) = β0

Φ

(
fGδGpK + fKδKψ + fKδK

β1pK+2f2
K

Φ
)

.
Since 0 < a−1 < a0 < a1 < a2 < a4 < a5 < a6 (cf. Appendix C), it follows that the
gas supplier’s profit (if going for the non-binding alternative) is maximized by choosing
γ(a) = γ̂(a) on a ∈ (a0, a2] and γ(a) = γ∗A on a ≥ a2, and his corresponding profit is lower
than C̄A on a ∈ (a0, a2) and equals C̄A on a ≥ a2.

Curve CB( · ) equals C̄A at both a3 and a7 := a6 + 2β0pKfG
−Q ·

√
Ψ
Φ ·

β1δ2
K

β1pK+2f2
K

> a6 (cf.

Appendix C). Since a3 ∈ (a2, a4) (cf. Appendix C), C̄A lies above CB( · ) between a3 and a7,
and C̄A lies below CB( · ) outside [a3, a7]. In particular, given our assumption concerning the
gas supplier’s preference for a binding permits level (if indifferent with respect to profits),
the gas supplier goes for the binding alternative if a ∈ (a−1, a3] and for the non-binding
alternative if a > a3.

d) It is easy to verify that 2β0δG(−D)
R < a1 (cf. Appendix C).

f) The calculation of Wγ(a) is standard (cf. Appendix C). Considering the first derivative with
respect to permits level a, and, in particular, noting that ∂Wγ(a)

∂a = 0 is equivalent to the
permits level being equal to

a∗(γ) :=
−Ṽ1(γ)
2Ṽ2(γ)

=
2β0(fKδKγ + fGδGpK)− 2qΨ(γ)

Φ(γ)
,

Wγ(a) obtains its maximum at a∗(γ), it is increasing on a < a∗(γ) and decreasing on
a > a∗(γ). It is easy to verify that a∗(γ∗B) > a∗(ψ) > 2β0δG(−D)

R > 0 (cf. Appendix C), that

a∗(γ∗B)
(>)
= a3 ⇔ q

(<)
= q3, and that q3 > 0 (cf. Appendix C). Since a∗(γ∗B) and a3 are both

greater than 2β0δG(−D)
R(γ∗B) (cf. Appendix C), a∗(ψ) > 2β0δG(−D)

R , and a∗(ψ) < a1, and given
our previous results for the two scenarios, we have that the welfare-maximizing permits
level equals min{a∗(γ∗B) = a∗M , a3} in the monopolistic and a∗(ψ) = a∗C in the competitive
scenario. To see that a∗C(q) < â∗M (q), note that a∗(γ∗B) ≤ a3 implies a∗(ψ) < a∗(γ∗B) =
min{a∗(γ∗B), a3}, and that a∗(γ∗B) ≥ a3 implies a∗(ψ) < a1 < a3 = min{a∗(γ∗B), a3}.
All welfare implications follow immediately from the representation of Wγ(a). The calcula-
tions for the gas supplier’s profits are standard (cf. Appendix C).

g) The relation between WC
B (q) and WC

A (q) is easy to verify (cf. Appendix C).
h) The relation between q3 and q̃(Q) and the relationship between WM

B (q) and WM
A (q) on the

one hand and q and q̃(Q) on the other hand are both easy to verify (cf. Appendix C).
2
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Lemma 2.2 (Necessary Conditions for Equilibria in the Emission Permits Regime if Q > 0)
In any equilibrium of the emission permits regime in case of Q > 0,
a) factor inputs K and G equal K∗A and G∗A as specified in Lemma 2.1a, respectively, if the

emission permits level is non-binding, and
b) factor inputs K and G equal K∗B and G∗B as specified in Lemma 2.1b, respectively, if the

emission permits level is binding and (γ, a) satisfies 2β0δGD + aR(γ) > 0.
c) In the monopolistic scenario, if a ∈

(
a−1

def= 2β0δG(−D)
R(γ∗B) , a4

def= 2δK
β0γ∗BfK
Φ(γ∗B) + 2δGβ0pKfG

Φ(γ∗B)

)
, then

the permits level is binding and gas price γ equals γ∗B
def= Ψ

β1δ2
K

+ψ. If a ≥ a2, then the permits

level is non-binding, gas price γ equals γ∗A
def= Φ

β1pK+2f2
K

+ ψ, and the gas supplier’s profits

are ΓA as specified in Lemma 2.1c. If a ∈
[
a4, a2

def= β0

Φ · (fGδGpK + fKδKψ + fKδK
β1pK+2f2

K
Φ)
]
,

then the permits level is non-binding, gas price γ equals
γ̂(a) def=

a · 2f2
GpK − 2β0fGδGpK

2β0δKfK − a · (β1pK + 2f2
K)
,

and the gas supplier’s profits are

Γ̂A(a) :=
[Φ · a− 2β0(fKδKψ + fGδGpK)] · [2β0fKδK − (β1pK + 2f2

K) · a]
4Q2

> 0

(note that γ̂(a2) = γ∗A and γ̂(a4) = γ∗B).
d) In the competitive scenario, where gas price γ equals ψ, (it is obvious that) permits level a

is non-binding if a ≥ a1
def= 2δK β0ψfK

Φ + 2δGβ0pKfG
Φ and binding if a ∈

(
2β0δG(−D)

R , a1

)
.

e) In the competitive scenario, if the emission permits level is non-binding, then (it is obvious
that) the welfare level equals that of the taxes regime for tax level p = 0, i.e., WC

A (q) =
WC
p=0(q) (cf. Lemma 1). In particular, the welfare level is below its counterpart in the emis-

sion taxes regime (where p = p∗ = q).
In the monopolistic scenario, if the emission permits level is non-binding and a ≥ a2, then
the welfare level equals that of the taxes regime for tax level p = 0, i.e., WM

A (q) = WM
p=0(q)

(cf. Lemma 1). In particular, the welfare level is below its counterpart in the taxes regime
(where p = p∗ = q). If the emission permits level is non-binding and a ∈ [a4, a2], then
welfare can be calculated as

ŴM (a) :=
W̃0(γ̂(a))

2β1Φ(γ̂(a))
=

2β2
0fKD + β1(β0fGpK − 2Qq) · a

2β1Q(cf. Lemma 1c).
It follows that the regulator’s welfare maximizing permits level choice in the monopolistic
scenario, if going for the non-binding permits level alternative, is a4 if q > β0fGpK

2Q , resulting

in welfare level ŴM
A (q) := ŴM (a4) (> ŴM (a2) = WM

A (q)). If q < β0fGpK
2Q or q = β0fGpK

2Q ,
then any a ≥ a2 or any a ≥ a4, respectively, maximizes welfare, resulting in welfare WM

A (q).
f) If the emission permits level is binding, then welfare, whenever 2β0δGD+aR(γ) > 0, equals

Wγ(a) as specified in Lemma 2.1f. It follows that the regulator’s welfare-maximizing permits
level choice, if going for the binding permits level alternative, is

a∗C(q) def= a1 −
2Ψ
Φ
q ∈

(
2β0δG(−D)

R
, a1

)
and a∗M (q) def= a4 −

4Ψ

Φ + β1pK+2f2
K

β1δ2
K

Ψ
q ∈ (a−1, a4)

in the competitive and in the monopolistic scenario, respectively.
In particular, the regulator’s permits level choice is lower in the monopolistic as compared
to the competitive scenario.
If the regulator goes for the binding permits level alternative, then welfare in the competitive
scenario (γ = ψ, a = a∗C) equals WC

B (q) as specified in Lemma 2.1f. In the monopolistic
scenario (γ = γ∗B, a = a∗M ), welfare equals WM

B (q) as specified in Lemma 2.1f, and the gas
supplier’s profits are ΓB(q) as specified in Lemma 2.1f.

g) In the competitive scenario, WC
B (q) > WC

A (q). Therefore, the regulator’s welfare-maximizing
permits level choice is a∗C , and the emission permits level is binding.
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h) In the monopolistic scenario, WM
A (q)

<
> WM

B (q) ⇔ q
>
< q̃(Q) def= β0pKfGQ

2(β1pK+2f2
K)Ψ

(
< β0fGpK

2Q

)
,

and ŴM
A (q) < WM

B (q). Therefore, if q > q̃(Q), then the regulator’s welfare-maximizing
permits level choice is a∗M , the emission permits level is binding, and the welfare level equals
WM
B (q). If q < q̃(Q), any permits level a ≥ a2 maximizes welfare and, in particular, is

non-binding, and the welfare level equals WM
A (q). If q = q̃(Q), then welfare is maximized by

choosing either a∗M (resulting in a binding permits level) or any level a ≥ a2 (resulting in a
non-binding permits level), and the welfare level equals WM

B (q) = WM
A (q).

Proof of Lemma 2.2
c) First, note that the gas supplier’s profits in case of a binding permits level are given by

(γ−ψ) ·G∗B(γ) as specified in the proof of Lemma 2.1c. This curve (considered as a function
of γ) obtains its maximum at γ∗B and, for γ = γ∗B, this curve (considered as a function of
a) equals CB( · ), CB(a) def= Ψ

β1δ2
K
· [2β0δK(−D)+aQ]2

4(2Ψ)2 . Curve CB( · ) is a quadratic function of
a, it is increasing and positive on a ≥ 0. The gas supplier’s profits in case of a non-binding
permits level are given by (γ − ψ) · G∗A(γ) as specified in the proof of Lemma 2.1c. This
curve (considered as a function of γ) obtains its maximum at γ∗A and, for γ = γ∗A, this curve
(considered as a function of a) is constant in a and equals C̄A

def= Φ
(β1pK+2f2

K)
· (β0pKfG)2

(2Φ)2 . (Cf.
the proof of Lemma 2.1c.)
Note that, since Q > 0, now 0 < a5 < a4 < a2 < a1 < a0 and a−1 < a4 (cf. Appendix C).
If going for the non-binding permits level alternative, profit is maximized by choosing γ(a) ∈
arg maxγ∈[ψ,∞)(γ − ψ) · G∗A(γ) subject to 2δK

√
K∗A + 2δG

√
G∗A ≤ a, i.e., subject to the

permits level being non-binding (cf. part a) of Lemma 2.2). First, note that going for
the non-binding permits level alternative requires a > a5

def= 2β0fKδK
β1pK+2f2

K
, since otherwise the

inequality constraint cannot be satisfied for γ ≥ 0: If a < a5, then the inequality constraint
is equivalent to γ ≤ γ̂(a) def= a·2f2

GpK−2β0fGδGpK
2β0δKfK−a·(β1pK+2f2

K)
, the fraction on the right-hand side being

lower than zero (since the numerator is negative and the denominator positive), and if
a = a5, then the inequality constraint is equivalent to Q ≤ 0, contradicting Q > 0. If
a > a5, then the inequality constraint 2δK β0γfK

Φ(γ) + 2δGβ0pKfG
Φ(γ) ≤ a is equivalent to γ ≥ γ̂(a).

If a ≥ a2
def= 2δK

β0γ∗AfK
Φ(γ∗A) + 2δGβ0pKfG

Φ(γ∗A) , then the gas supplier’s profit (if going for the non-
binding alternative) is maximized by choosing γ(a) = γ∗A, and his corresponding profit is
C̄A. If a ∈ (a5, a2), then the gas supplier’s profit is maximized by choosing γ(a) = γ̂(a),
and his corresponding profit is (γ̂(a) − ψ) · G∗A(γ̂(a)) = (γ̂(a)−ψ)(β0pKfG)2

Φ(γ̂(a))2 = Γ̂A(a) > 0 (cf.
Appendix C). Note that the latter curve is a concave quadratic function of a, which obtains
its maximum C̄A at a2 and equals CB(a4) at a4

def= 2δK
β0γ∗BfK
Φ(γ∗B) + 2δGβ0pKfG

Φ(γ∗B) .
If going for the binding permits level alternative, profit is maximized by choosing γ(a) ∈
arg maxγ∈[ψ,∞)(γ−ψ)·G∗B(γ) subject to 2δK

√
K∗A+2δG

√
G∗A > a, i.e., subject to the permits

level being binding. First, note that the inequality constraint is satisfied for all γ ≥ 0 if
a ≤ a5. If a > a5, then the constraint cannot be satisfied for γ ≥ 0 if a ≥ a0

def= β0δG
fG

, and the
constraint is equivalent to γ < γ̂(a) (> 0) if a < a0. In the latter case, i.e., a ∈ (a5, a0), the
interval of available gas prices is bounded from above by a decreasing function of permits
level a (cf. Appendix C), that allows the gas supplier to choose (gas price ψ exactly on
a < a1

def= 2δK β0ψfK
Φ + 2δGβ0pKfG

Φ , and) gas price γ∗B exactly on a < a4. If a ∈ (a−1, a4),
then the gas supplier’s profit (if going for the binding alternative) is maximized over all
alternatives with a well-defined outcome (i.e., over all γ > 2(−D)(β0δG−fGa)

β1δKa
, γ ≥ ψ) by

choosing γ(a) = γ∗B, and his corresponding profit is CB(a). If a ∈ [a4, a0), his achievable
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profit is lower than (γ̂(a) − ψ) · G∗B(γ̂(a)) = (γ̂(a)−ψ)[2β0δK(−D)+aQ]2

4Ψ(γ̂(a))2 , which equals Γ̂A(a)
(cf. Appendix C). If a ≤ a−1, then the gas supplier’s profit (if going for the binding
alternative) cannot be maximized over all alternatives with a well-defined outcome (i.e.,
over all γ > 2(−D)(β0δG−fGa)

β1δKa
(> ψ)).

Since Γ̂A(a) is below CB(a) on a < a4 and below C̄A on a > a2, it follows that the gas
supplier goes for the binding permits level alternative if a ∈ (a−1, a4) and for the non-
binding alternative if a ≥ a4.

e) The calculation of ŴM (a) is standard (cf Appendix C).
f) The calculation of Wγ(a) is standard (cf. our calculations for Lemma 2.1f). Wγ(a) obtains

its maximum at a∗(γ) as defined in the proof of Lemma 2.1f, and it is easy to verify that
a∗(γ∗B) > 2β0δG(−D)

R(γ∗B) > 0, a∗(ψ) > 2β0δG(−D)
R > 0, and a∗(ψ) > a∗(γ∗B) (cf. our calculations

for Lemma 2.1f and note that q < q̄ implies β0fGpK − qQ > 0). Given our previous results
for the two scenarios, since a∗(γ∗B) < a4 and a∗(ψ) < a1, the welfare-maximizing permits
level is a∗(γ∗B) = a∗M in the monopolistic and a∗(ψ) = a∗C in the competitive scenario.
All welfare implications follow immediately from the representation of Wγ(a). The calcula-
tions for the gas supplier’s profits are standard (cf. our calculations for Lemma 2.1f).

g) The relation WC
B (q) > WC

A (q) is easy to verify (cf. our calculations for Lemma 2.1g).
h) To see that ŴM

A (q) < WM
B (q), note that, for a = a4 and γ = γ̂(a4) = γ∗B, we have that

K∗A = K∗B and G∗A = G∗B. Therefore, ŴM
A (q) def= ŴM (a4) = Wγ∗B

(a4), where ŴM (a) and
Wγ(a) are as defined in part e) and f), respectively. Since a∗M (q) = arg maxaWγ∗B

(a) and

a∗M (q) ∈ (a−1, a4), ŴM
A (q) must necessarily be lower than WM

B (q) def= Wγ∗B
(a∗M (q)).

The relationship between WM
B (q) and WM

A (q) on the one hand and q and q̃(Q) on the other
hand is easy to verify (cf. Appendix C).

2

Lemma 2.3 (Necessary Conditions for Equilibria in the Emission Permits Regime if Q = 0)
In any equilibrium of the emission permits regime in case of Q = 0,
a) factor inputs K and G equal K∗A and G∗A as specified in Lemma 2.1a, respectively, if the

emission permits level is non-binding, and
b) factor inputs K and G equal K∗B and G∗B as specified in Lemma 2.1b, respectively, if the

emission permits level is binding and (γ, a) satisfies 2β0δGD + aR(γ) > 0.
c) In the monopolistic scenario, if a ≥ a0

def= β0δG
fG

(= a1 = a2 = a4 = a5), then the permits level

is non-binding and gas price γ equals γ∗A
def= Φ

β1pK+2f2
K

+ ψ. If a ∈ (a−1
def= 2β0δG(−D)

R(γ∗B) , a0),

then the permits level is binding and gas price γ equals γ∗B
def= Ψ

β1δ2
K

+ ψ. In either case, the
gas supplier’s profits are ΓA as specified in Lemma 2.1c.

d) In the competitive scenario, where gas price γ equals ψ, (it is obvious that) permits level a is
non-binding if a ≥ a1

def= 2δK β0ψfK
Φ + 2δGβ0pKfG

Φ (= a0) and binding if a ∈
(

2β0δG(−D)
R , a1

)
.

e) If the emission permits level is non-binding, then (it is obvious that) the welfare levels equal
those of the taxes regime for tax level p = 0, i.e., WC

A (q) = WC
p=0(q) and WM

A (q) = WM
p=0(q)

in the competitive and monopolistic scenario, respectively (cf. Lemma 1). In particular,
they are below their respective counterparts in the taxes regime (where p = p∗ = q).

f) If the emission permits level is binding, then welfare, whenever 2β0δGD+aR(γ) > 0, equals
Wγ(a) as specified in Lemma 2.1f. It follows that the regulator’s welfare-maximizing permits
level choice, if going for the binding permits level alternative, is

a∗C(q) def= a1 −
2Ψ
Φ
q ∈

(
2β0δG(−D)

R
, a1

)
and a∗M (q) def= a4 −

4Ψ

Φ + β1pK+2f2
K

β1δ2
K

Ψ
q ∈ (a−1, a0 (= a4))

in the competitive and monopolistic scenario, respectively.
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In particular, the regulator’s permits level choice is the same in the two scenarios.
If the regulator goes for the binding permits level alternative, then welfare in the competitive
scenario (γ = ψ, a = a∗C) equals WC

B (q) as specified in Lemma 2.1f. In the monopolistic
scenario (γ = γ∗B, a = a∗M ), welfare equals WM

B (q) as specified in Lemma 2.1f, and the gas
supplier’s profits equal ΓA = ΓB(q) as specified in Lemma 2.1f.

g) In the competitive scenario, WC
B (q) > WC

A (q). Therefore, the regulator’s welfare-maximizing
permits level choice is a∗C , the emission permits level is binding, and welfare equals WC

B (q).
h) In the monopolistic scenario, WM

B (q) > WM
A (q). Thus, the regulator’s welfare-maximizing

permits level choice is a∗M , the emission permits level is binding, and welfare equals WM
B (q).

Proof of Lemma 2.3
c) First, note that the gas supplier’s profits in case of a binding permits level are given by

(γ−ψ) ·G∗B(γ) as specified in the proof of Lemma 2.1c. This curve (considered as a function
of γ) obtains its maximum at γ∗B and, for γ = γ∗B, this curve (considered as a function of a)

is constant in a and equals C̄B := β2
0D

2

4β1Ψ . The gas supplier’s profits in case of a non-binding
permits level are given by (γ − ψ) · G∗A(γ) as specified in the proof of Lemma 2.1c. This
curve (considered as a function of γ) obtains its maximum at γ∗A and, for γ = γ∗A, this curve
(considered as a function of a) is constant in a and equals C̄A

def= Φ
(β1pK+2f2

K)
· (β0pKfG)2

(2Φ)2 = C̄B

(for the latter equality, cf. Appendix C). (Cf. the proof of Lemma 2.1c.)
Since Q = 0, now a−1 < a0 = a1 = a2 = a4 = a5 (cf. our calculations for Lemma 2.1c).
If going for the binding permits level alternative, profit is maximized by choosing γ(a) ∈
arg maxγ∈[ψ,∞)(γ−ψ)·G∗B(γ) subject to 2δK

√
K∗A+2δG

√
G∗A > a (cf. part a) of Lemma 2.3).

First, note that going for the binding permits level alternative requires a < a5
def= 2β0fKδK

β1pK+2f2
K

,
since otherwise the inequality constraint cannot be satisfied for γ ≥ 0: If a > a5, then the
inequality constraint is equivalent to γ < γ̂(a) def= a·2f2

GpK−2β0fGδGpK
2β0δKfK−a·(β1pK+2f2

K)
, the fraction on the

right-hand side being lower than zero (since the numerator is positive and the denominator
negative), and if a = a5, then the inequality constraint is equivalent to Q > 0, contradicting
Q = 0. If a < a5, then the inequality constraint 2δK β0γfK

Φ(γ) + 2δGβ0pKfG
Φ(γ) > a is equivalent to

γ > γ̂(a). If a < a4
def= 2δK

β0γ∗BfK
Φ(γ∗B) + 2δGβ0pKfG

Φ(γ∗B) = a5, and if a > a−1 (< a5), then the gas
supplier’s profit (if going for the binding alternative) is maximized over all alternatives with
a well-defined outcome (i.e., over all γ > 2(−D)(β0δG−fGa)

β1δKa
, γ ≥ ψ) by choosing γ(a) = γ∗B,

and his corresponding profit is C̄B. If a ≤ a−1, then the gas supplier’s profit (if going for the
binding alternative) cannot be maximized over all alternatives with a well-defined outcome
(i.e., over all γ > 2(−D)(β0δG−fGa)

β1δKa
(> ψ)).

If going for the non-binding permits level alternative, profit is maximized by choosing γ(a) ∈
arg maxγ∈[ψ,∞)(γ−ψ)·G∗A(γ) subject to 2δK

√
K∗A+2δG

√
G∗A ≤ a. The inequality constraint

is satisfied for all γ ≥ 0 if a ≥ a5, and the constraint cannot be satisfied for γ > 0 if a < a5.
Thus, the gas supplier’s profit (if going for the non-binding alternative) is maximized by
choosing γ(a) = γ∗A on a ≥ a5, and his corresponding profit is C̄A.
It follows that the gas supplier goes for the binding alternative if a ∈ (a−1, a5) and for the
non-binding alternative if a ≥ a5.

f) The calculation of Wγ(a) is standard (cf. our calculations for Lemma 2.1f). Wγ(a) obtains
its maximum at a∗(γ) as defined in the proof of Lemma 2.1f, and it is easy to verify that
a∗(γ∗B) = a∗(ψ) > 2β0δG(−D)

R > 2β0δG(−D)
R(γ∗B) (cf. our calculations for Lemma 2.1f). Since

a∗(γ∗B) < a0 (= a4) and a∗(ψ) < a1, and given our previous results for the two scenarios, the
welfare-maximizing permits level equals a∗(γ∗B) = a∗M in the monopolistic and a∗(ψ) = a∗C
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in the competitive scenario.
All welfare implications follow immediately from the representation of Wγ(a). Finally, it is
easy to verify that ΓB(q) = ΓA (cf. our notes at the beginning of Appendix C).

g) The relation WC
B (q) > WC

A (q) is easy to verify (cf. our calculations for Lemma 2.1g).
h) The relation WM

B (q) > WM
A (q) is easy to verify (cf. our calculations for Lemma 2.1h).

2

Lemma 2 (Equilibria with a Binding Permits Level)
Summarizing Lemma 2.1 to 2.3, (K∗B(a∗C), G∗B(a∗C), a∗C) is the unique equilibrium (and one with
a binding permits level) in the competitive scenario of the emission permits regime. In the mo-
nopolistic scenario, if q < q̃(Q) (which implies Q 6= 0), then there does not exist an equilibrium
with a binding permits level. If q ≥ q̃(Q), then (K∗B(γ∗B, a

∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M ) is the unique

equilibrium with a binding permits level; if q > q̃(Q), it is the unique equilibrium.

Lemma 3 and 4 follow from standard calculations (cf. Appendix C).

Lemma 3 (Differences in Welfare and in the Gas Supplier’s Profits across Regimes)
a) In the monopolistic scenario, if q > q̃(Q), then the difference in welfare between the unique

equilibrium of the taxes regime, (K∗(γ∗, p∗), G∗(γ∗, p∗), γ∗, p∗), and the unique equilibrium
of the permits regime, (K∗B(γ∗B, a

∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M ), is

WM (q)−WM
B (q) =

Q2[β0pKfG − qQ]2

2Φ · (β1pK + 2f2
K)[β1δ2

KΦ + (β1pK + 2f2
K)Ψ]

.

In particular, if Q 6= 0, then this difference is greater than zero, it is increasing in marginal
emission cost q if Q < 0, and it is decreasing in q if Q > 0 (note that β0pKfG − qQ > 0,
which, if Q > 0, follows from q < q̄).
If q ≤ q̃(Q) (which implies Q 6= 0), then the difference in welfare between the unique equilib-
rium of the taxes regime and any equilibrium of the permits regime is WM (q) −WM

A (q) =
WM (q)−WM

p=0(q) > 0 and increases in marginal emission cost q (cf. Lemma 1).
b) If q ≥ q̃(Q) (> q3 if Q < 0), then the difference in the resulting gas supplier’s profits between

the unique equilibrium of the taxes regime, (K∗(γ∗, p∗), G∗(γ∗, p∗), γ∗, p∗), and the binding
permits level equilibrium, (K∗B(γ∗B, a

∗
M ), G∗B(γ∗B, a

∗
M ), γ∗B, a

∗
M ), is

Γ(q)− ΓB(q) =
Q4[β0pKfG − qQ]2

4Φ · (β1pK + 2f2
K) [β1δ2

KΦ + (β1pK + 2f2
K)Ψ]2

.

In particular, if Q 6= 0, then this difference is greater than zero; whereas the gas price is
higher in the emission permits regime, the demand for gas is lower: γ∗ < γ∗B and G∗ > G∗B.
If q ≤ q̃(Q) (which implies Q 6= 0), then the difference in the resulting gas supplier’s profits
between the unique equilibrium of the taxes regime and any non-binding permits level equi-
librium of the permits regime is

Γ(q)− ΓA =
[β0pKfG − qQ]2 − (β0pKfG)2

4Φ · (β1pK + 2f2
K)

> 0.

Here, the gas price is the same in the two regimes (γ∗ = γ∗A), and the demand for gas is
lower in the permits regime if Q < 0 (i.e., G∗ > G∗A) and higher if Q > 0 (i.e., G∗ < G∗A).

c) In the competitive scenario, the difference in welfare between the unique equilibrium of
the taxes regime, (K∗(p∗), G∗(p∗), p∗), and the unique equilibrium of the permits regime,
(K∗B(a∗C), G∗B(a∗C), a∗C), is WC(q)−WC

B (q) = 0.

Lemma 4
For ψ sufficiently high (in relative terms), q̃(Q) (and thus also q3 < q̃(Q) in case of Q < 0) is
(well) below the boundary q̄ for marginal emission cost q, i.e., q̃(Q) < β0fKψ

R .
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C Calculations

Note that, in some of the subsequent calculations, we use that

Φ− β1pK + 2f2
K

β1δ2
K

Ψ = 2f2
GpK −

β1pK + 2f2
K

β1δ2
K

(β1δ
2
GpK + 2D2) =

−[β1pKδG + 2fKD]2

β1δ2
K

=
−Q2

β1δ2
K

,

which implies that [β1δ
2
KΦ− (β1pK + 2f2

K)Ψ] = −Q2,

Ψ− β1δ
2
K

β1pK + 2f2
K

Φ =
Q2

β1pK + 2f2
K

, and[
β1δ

2
KΦ + (β1pK + 2f2

K)Ψ
]2

= Q4 + 4ΨΦ · (β1pK + 2f2
K)β1δ

2
K .

C.1 Calculations for Lemma 1c

Wγ(p) =
β0

β1
[2fK

√
K∗ + 2fG

√
G∗]− 1

2β1
[2fK

√
K∗ + 2fG

√
G∗]2 − [pKK

∗ + γG∗]− q[2δK
√
K∗ + 2δG

√
G∗]

=
β0

β1
· [2β0(f2

Kγ + f2
GpK)− 2β1p(fKδKγ + fGδGpK)]

Φ(γ)

− 1

2β1
· [2β0(f2

Kγ + f2
GpK)− 2β1p(fKδKγ + fGδGpK)]2

Φ(γ)2

− pK ·
[β0γfK − pR(γ)]2

Φ(γ)2
− γ · [β0pKfG − pQ]2

Φ(γ)2

− 2qδK ·
[β0γfK − pR(γ)]

Φ(γ)
− 2qδG ·

[β0pKfG − pQ]

Φ(γ)
, i.e.

2β1Φ(γ)2 ·Wγ(p) = 2β0[2β0(f2
Kγ + f2

GpK)− 2β1p(fKδKγ + fGδGpK)][β1pKγ + 2f2
Kγ + 2f2

GpK ]

− [2β0(f2
Kγ + f2

GpK)− 2β1p(fKδKγ + fGδGpK)]2

− 2β1pK [β0γfK + (2fGfKδG − δKβ1γ − 2δKf
2
G)p]2

− 2β1γ[β0pKfG + (2fGfKδK − δGβ1pK − 2δGf
2
K)p]2

− 4β1qδK [β0γfK + 2fGfKδGp− δKpβ1γ − 2δKpf
2
G]Φ(γ)

− 4β1qδG[β0pKfG + 2fKfGδKp− δGpβ1pK − 2δGpf
2
K ]Φ(γ)

= W̃ ′2(γ) · p2 + W̃ ′1(γ) · p+ W̃ ′0(γ) , where

W̃ ′2(γ) = − (2β1)2(fKδKγ + fGδGpK)2

− 2β1pK(2fGfKδG − δKβ1γ − δK2f2
G)2 − 2β1γ(2fGfKδK − δGβ1pK − δG2f2

K)2

= − 2β1 ·Ψ(γ) · Φ(γ) ,

W̃ ′1(γ) = − 4β0β1(fKδKγ + fGδGpK)(β1pKγ + 2f2
Kγ + 2f2

GpK)

+ 4β0β1(2f2
Kγ + 2f2

GpK)(fKδKγ + fGδGpK)

− 4β0β1pKfKγ(2fGfKδG − δKβ1γ − δK2f2
G)− 4β0β1pKfGγ(2fGfKδK − δGβ1pK − δG2f2

K)

− 4β1q(2fGfKδGδK − δ2
Kβ1γ − δ2

K2f2
G)Φ(γ)− 4β1q(2fGfKδKδG − δ2

Gβ1pK − δ2
G2f2

K)Φ(γ)

= 4β1qΦ(γ)[δ2
K(β1γ + 2f2

G) + δ2
G(β1pK + 2f2

K)− 4fGfKδGδK ]

= 4β1q · Φ(γ) ·Ψ(γ) , and

W̃ ′0(γ) = (2β0)2(f2
Kγ + f2

GpK)(β1pKγ + 2f2
Kγ + 2f2

GpK)− (2β0)2(f2
Kγ + f2

GpK)2

− 2β1pK(β0γfK)2 − 2β1γ(β0pKfG)2

− 4β1qδKβ0γfKΦ(γ)− 4β1qδGβ0pKfGΦ(γ)

= 2β0[β1pKγ + 2f2
Kγ + 2f2

GpK ]β0(f2
Kγ + f2

GpK)− 2β0Φ(γ)2β1q(fKδKγ + δGfGpK)

= 2β0 · Φ(γ) · [β0(f2
Kγ + f2

GpK)− 2β1q(fKδKγ + δGfGpK)].

C.2 Calculations for Lemma 2.1c

To see that 0 < a−1 < a0 < a1 < a2 < a4 < a5 < a6, note that the first inequality is obvious, that a0 > a−1 is

equivalent to 2β0δG(−D)

R+ Ψ
δK

< β0δG
fG
⇔ β1δKψ + Ψ

δK
> 0, a true statement, that a1 > a0 is equivalent to

β0δG
fG

<
2β0(fKδKψ + fGδGpK)

Φ

⇔ δG[(β1pK + 2f2
K)ψ + 2f2

GpK ] < 2fG(fKδKψ + fGδGpK)

⇔ Q < 0,
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that a2 > a1 is equivalent to β0

Φ

[
fKδKψ + fGδGpK +

fKδK
β1pK + 2f2

K

Φ

]
>

2β0(fKδKψ + fGδGpK)

Φ

⇔ (fKδKψ + fGδGpK) +
fKδK

β1pK + 2f2
K

Φ > 2(fKδKψ + fGδGpK)

⇔ −(β1pK + 2f2
K)(fKδKψ + fGδGpK) + fKδKΦ > 0

⇔ −(β1pK + 2f2
K)fGδGpK + fKδK2f2

GpK > 0

⇔ −fGpK [β1δGpK + 2fK(fKδG − fGδK)] > 0

⇔ −Q > 0,

that a4 > a2 is equivalent to

2β0(fKδKψ + fGδGpK) + 2β0fKδK
β1δ

2
K

Ψ

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
>
β0

Φ

[
fKδKψ + fGδGpK +

fKδK
β1pK + 2f2

K

Φ

]

⇔ (fKδKψ + fGδGpK)Φ +
fKδK
β1δ2

K

ΨΦ >
fKδK

β1pK + 2f2
K

Φ2 + (fKδKψ + fGδGpK)
β1pK + 2f2

K

β1δ2
K

Ψ

⇔ (fKδKψ + fGδGpK)

[
Φ− β1pK + 2f2

K

β1δ2
K

Ψ

]
+

fKδKΦ

β1pK + 2f2
K

[
β1pK + 2f2

K

β1δ2
K

Ψ− Φ

]
> 0

⇔ (fKδKψ + fGδGpK)
−Q2

β1δ2
K

+
fKδKΦ

β1pK + 2f2
K

· Q2

β1δ2
K

> 0

⇔ −(β1pK + 2f2
K)(fKδKψ + fGδGpK) + fKδKΦ > 0

⇔ −Q > 0,

that a4 < a5 is equivalent to 2β0(fKδKψ + fGδGpK) + 2β0fK
β1δK

Ψ

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
<

2β0δKfK
β1pK + 2f2

K

⇔ δKfKΦ +
β1pK + 2f2

K

β1δ2
K

δKfKΨ > (β1pK + 2f2
K)(fKδKψ + fGδGpK) + (β1pK + 2f2

K)
fKδK
β1δ2

K

Ψ

⇔ δKfK · [(β1pK + 2f2
K)ψ + 2f2

GpK ] > (β1pK + 2f2
K)(fKδKψ + fGδGpK)

⇔ 2f2
GpKδKfK > (β1pK + 2f2

K)fGδGpK

⇔ Q < 0,

and that a5 < a6 is equivalent to 2β0δKfK
β1pK + 2f2

K

<
2β0δKD

β1δGpK + 2fKD

⇔ fK · [β1δGpK + 2fKD] > (β1pK + 2f2
K) ·D

⇔ δGfK > D,

a true statement. To see that a3 ∈ (a2, a4), note that a3 > a2 is equivalent to

−2β0δKD

−Q − 2β0pKfG
−Q

√
Ψ

Φ
· β1δ2

K

(β1pK + 2f2
K)

>
β0(pKfGQ+ δKfK2Φ)

(β1pK + 2f2
K)Φ

⇔ 2pKfG(β1pK + 2f2
K)Φ

√
Ψ

Φ
· β1δ2

K

(β1pK + 2f2
K)

+ 2δKD(β1pK + 2f2
K)Φ < (pKfGQ+ δKfK2Φ)Q

⇔ 2pKfG(β1pK + 2f2
K)Φ

√
Ψ

Φ
· β1δ2

K

(β1pK + 2f2
K)

+ 2δKDβ1pKΦ

< (pKfGQ+ δKfK2Φ)β1δGpK + pKfGQ2fKD

⇔ 2pKfG(β1pK + 2f2
K)Φ

√
Ψ

Φ
· β1δ2

K

(β1pK + 2f2
K)

+ 2β1pKΦδK(D − fKδG) < pKfGQ
2

⇔ 2(β1pK + 2f2
K)Φ

√
Ψ

Φ
· β1δ2

K

(β1pK + 2f2
K)
− 2β1Φδ2

K −Q2 < 0

⇔
√

4ΦΨ(β1pK + 2f2
K)β1δ2

K < 2β1Φδ2
K − [β1δ

2
KΦ− (β1pK + 2f2

K)Ψ] ( = β1δ
2
KΦ + (β1pK + 2f2

K)Ψ )

⇔ 4ΦΨ(β1pK + 2f2
K)β1δ

2
K < [β1δ

2
KΦ + (β1pK + 2f2

K)Ψ]2

⇔ 0 < [β1δ
2
KΦ− (β1pK + 2f2

K)Ψ]2,

a true statement, and that, in Lemma 2.1f, we show that a3 = a4 − 4Ψ ·
[
Φ +

β1pK+2f2
K

β1δ
2
K

Ψ
]−1

· q3 with q3 > 0.
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The intersections of CB(a) with C̄A are determined by

Φ

(β1pK + 2f2
K)
· (β0pKfG)2

(2Φ)2
=

Ψ[2β0δK(−D) + aQ]2

β1δ2
K4(2Ψ)2

⇔ [2β0δK(−D) + aQ]2 =
Φ(β0pKfG)2β1δ

2
K4(2Ψ)2

(β1pK + 2f2
K)(2Φ)2Ψ

⇔ 2β0δK(−D) + aQ =
+
−

√
Φ(β0pKfG)2β1δ2

K4(2Ψ)2

(β1pK + 2f2
K)(2Φ)2Ψ

(
=

+
−

√
Φβ1δ2

K

Ψ(β1pK + 2f2
K)
· β0pKfG2Ψ

Φ

)

⇔ aQ =
+
−

√
Φβ1δ2

K

Ψ(β1pK + 2f2
K)
· β0pKfG2Ψ

Φ
+ 2β0δKD

⇔ a =
2β0δKD

Q

−
+

2β0pKfG
−Q · Ψ

Φ

√
Φβ1δ2

K

Ψ(β1pK + 2f2
K)

.

Finally, note that ∂γ̂(a)

∂a
=

−2β0pKfGQ

[2β0fKδK − (β1pK + 2f2
K)a]2

> 0.

C.3 Calculations for Lemma 2.1d

Note that 2β0δG(−D)
R

< a1 is equivalent to (the true statement)

2β0δG(−D)

R
<

2β0(fKδKψ + fGδGpK)

Φ

⇔ δG(−D)[(β1pK + 2f2
K)ψ + 2f2

GpK ] < (fKδKψ + fGδGpK)[β1δKψ + 2fG(−D)]

⇔ β1ψfK(−pKδ2
G − ψδ2

K) + 2fK(−D)ψ(fKδG − fGδK) < 0

⇔ Ψ > 0.

C.4 Calculations for Lemma 2.1f

Wγ(a) =
β0

β1
[2fK

√
K∗ + 2fG

√
G∗]− 1

2β1
[2fK

√
K∗ + 2fG

√
G∗]2 − [pKK

∗ + γG∗]− q · a

=
β0

β1
· [2β0D

2 + β1a(fKδKγ + fGδGpK)]

Ψ(γ)
− 1

2β1
· [2β0D

2 + β1a(fKδKγ + fGδGpK)]2

Ψ(γ)2

− pK
[2β0δGD + [δKβ1γ − 2fG(δGfK − δKfG)]a]2

4Ψ(γ)2

− γ [2β0δK(−D) + [δGβ1pK − 2fK(δKfG − δGfK)]a]2

4Ψ(γ)2

− q · a

=
1

4β1Ψ(γ)2
· [ 4β0[2β0D

2 + β1a(fKδKγ + fGδGpK)][β1(δ2
Kγ + δ2

GpK) + 2D2]

− 2[2β0D
2 + β1a(fKδKγ + fGδGpK)]2

− pKβ1[2β0δGD + [δKβ1γ − 2fGD]a]2

− γβ1[2β0δK(−D) + [δGβ1pK − 2fK(−D)]a]2 − q · a · 4β1Ψ(γ)2 ]

=
Ṽ ′2 (γ) · a2 + Ṽ ′1 (γ) · a+ Ṽ ′0 (γ)

4β1Ψ(γ)2
, where

Ṽ ′2 (γ) = −2β2
1(fKδKγ + fGδGpK)2 − pKβ1[δKβ1γ − 2fGD]2 − γβ1[δGβ1pK − 2fK(−D)]2

= −β1 ·Ψ(γ) · Φ(γ) ,

Ṽ ′1 (γ) = 4β0β1(fKδKγ + fGδGpK)Ψ(γ)

− 4 · 2β0β1(fKδG − fGδK)2(fKδKγ + fGδGpK)

− pK4β0β1δG(δGfK − δKfG)[δKβ1γ − 2fG(δGfK − δKfG)]

− γ4β0β1δK(δKfG − δGfK)[δGβ1pK − 2fK(δKfG − δGfK)] − q4β1Ψ(γ)2

= 4β0β1(fKδKγ + fGδGpK)Ψ(γ)− 4β1qΨ(γ)2 , and

Ṽ ′0 (γ) = 4β02β0D
2[β1(δ2

Kγ + δ2
GpK) + 2D2]− 2(2β0)2(fKδG − fGδK)2D2

− pKβ1(2β0)2δ2
GD

2 − γβ1(2β0)2δ2
KD

2

= 4β2
0D

2[β1(δ2
Kγ + δ2

GpK) + 2(fKδG − fGδK)2]

= 4β2
0D

2Ψ(γ).
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Note that a∗(ψ) < a∗(γ∗B) is equivalent to

β0(fKδKψ + fGδGpK)

[
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

]
− qΨ ·

[
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

]
< β0(fKδKψ + fGδGpK)Φ +

β0fKδK
β1δ2

K

ΨΦ− 2qΨΦ

⇔ β0(fKδKψ + fGδGpK)(β1pK + 2f2
K)

Ψ

β1δ2
K

− q Ψ2

β1δ2
K

(β1pK + 2f2
K) <

β0fKδK
β1δ2

K

ΨΦ− qΨΦ

⇔ β0(fKδKψ + fGδGpK)(β1pK + 2f2
K)− qΨ(β1pK + 2f2

K)

< β0fKδK [2f2
GpK + (β1pK + 2f2

K)ψ]− qβ1δ
2
KΦ

⇔ β0(fKδKψ + fGδGpK)(β1pK + 2f2
K)− β0fKδK2f2

GpK − β0fKδK(β1pK + 2f2
K)ψ

< q
[
(β1pK + 2f2

K)Ψ− β1δ
2
KΦ
]

⇔ β0fGpK [β1δGpK + 2fKD] < qQ2

⇔ β0fGpKQ < qQ2.

To see that a∗(ψ) > 2β0δG(−D)
R

, note that 2β0δGD + a∗(ψ)R > 0 is equivalent to (the true statement)

2β0δG(δGfK − δKfG) + [β1δKψ − 2fG(δGfK − δKfG)] · a∗(ψ) > 0

⇔ 2β0δG(δGfK − δKfG) + [β1δKψ − 2fG(δGfK − δKfG)] · 2β0(fKδKψ + fGδGpK)− qΨ
Φ

> 0

⇔ β0 [δG(δGfK − δKfG)Φ + [β1δKψ − 2fG(δGfK − δKfG)](fKδKψ + fGδGpK)]

> qΨ · [β1δKψ − 2fG(δGfK − δKfG)]

⇔ β0fKψ[β1(δ2
Kψ + δ2

GpK) + 2(fKδG − fGδK)2] > qΨR

⇔ q <
β0fKψ

R
(= q̄).

Furthermore, note that a∗(γ∗B) = a3 is equivalent to

β0(fKδKψ + fGδGpK) + β0fKδK
β1δ

2
K

Ψ− 2qΨ

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
=
β0δK(−D)

(−Q)
− β0pKfG

(−Q)

√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

⇔
(
fKδKψ + fGδGpK +

fKδK
β1δ2

K

Ψ

)
(−Q) + δKD

(
Φ +

β1pK + 2f2
K

β1δ2
K

Ψ

)

= −2qΨQ

β0
− pKfG

√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
,

where the left-hand side of the latter equality equals

(fKδKψ + fGδGpK)(−β1δGpK − 2fKD) + δKD(β1pKψ + 2f2
Kψ + 2f2

GpK)

+

[
fKδK
β1δ2

K

Ψ(−Q) + δKD
β1pK + 2f2

K

β1δ2
K

Ψ

]
= (fKδKψ + fGδGpK)(−β1δGpK) + (fGδGpK)(−2fKD) + δKD(β1pKψ + 2f2

GpK)

+
δKΨ

β1δ2
K

[fK(−Q) +D(β1pK + 2f2
K)]

= β1pK(δKψfKδG − δKψfGδK − fKδKψδG − fGδGpKδG) + δKD2f2
GpK − fGδGpK2fKD

+
δKΨ

β1δ2
K

[−fKβ1δGpK − fK2fKD + (β1pK + 2f2
K)D]

= −β1pKfG(δ2
Kψ + δ2

GpK) + 2DfGpK(−D) +
δKΨ

β1δ2
K

[−β1pKfGδK ]

= −fGpKΨ− fGpKΨ;

thus, a∗(γ∗B) = a3 is equivalent to

β0(−2fGpKΨ) + 2qΨQ = −β0pKfG

√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)

⇔ −β0pKfG

√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
+ 2β0fGpKΨ = 2qΨQ

⇔ q =
1

2Ψ · (−Q)
· β0pKfG

[√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
− 2Ψ

]
= q3,

and q3 > 0 if and only if √
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
− 2Ψ > 0
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⇔

√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

>
2Ψ

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ

⇔ Ψ

Φ
· β1δ

2
K

β1pK + 2f2
K

>
4Ψ2(

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
)2

⇔ β1δ
2
K

(
Φ +

β1pK + 2f2
K

β1δ2
K

Ψ

)2

> 4ΨΦ · (β1pK + 2f2
K)

⇔ [β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]2 − 4ΨΦ · (β1pK + 2f2
K)β1δ

2
K > 0

⇔ [β1δ
2
KΦ− (β1pK + 2f2

K)Ψ]2 > 0,

a true statement. Next, in order to see that a∗(γ∗B) > 2β0δG(−D)
R(γ∗

B
)

, note that 2β0δGD + R(γ∗B)a∗(γ∗B) > 0 is

equivalent to

β0δGD +

(
β1δKψ +

Ψ

δK
− 2fGD

)β0(fKδKψ + fGδGpK) + β0fK
β1δK

Ψ− 2qΨ

Φ +
(β1pK+2f2

K
)

β1δ
2
K

Ψ

 > 0

⇔ δGD

(
Φ +

(β1pK + 2f2
K)

β1δ2
K

Ψ

)
+

(
(fKδKψ + fGδGpK) +

fK
β1δK

Ψ

)(
(β1δKψ − 2fGD) +

Ψ

δK

)
>

q

β0
2Ψ ·

(
[β1δKψ − 2fG(δGfK − δKfG)] +

Ψ

δK

)
.

Since δG(δGfK − δKfG)[2f2
GpK + (β1pK + 2f2

K)ψ] + (fKδKψ + fGδGpK)[β1δKψ − 2fG(δGfK − δKfG)] = fKψΨ,

the left hand side of the latter inequality equals

fKψΨ + δGD
(β1pK + 2f2

K)

β1δ2
K

Ψ +
fK
β1δK

Ψ · (β1δKψ − 2fGD) +
fK
β1δ2

K

Ψ2 + (fKδKψ + fGδGpK)
Ψ

δK

= Ψ ·
[
δG(δGfK − δKfG)

(β1pK + 2f2
K)

β1δ2
K

+ fKψ +
fK
β1δK

R(γ∗B) + (fKδKψ + fGδGpK)
1

δK

]
= Ψ

fK
β1δK

R(γ∗B) + Ψ ·
[
δG(δGfK − δKfG)

(β1pK + 2f2
K)

β1δ2
K

+ fKψ + (fKδKψ + fGδGpK)
1

δK

]
= Ψ

fK
β1δK

R(γ∗B) + Ψ ·
[
fK [β1(δ2

GpK + δ2
Kψ) + 2fKδG(fKδG − δKfG)]

β1δ2
K

+
β1δ

2
KfKψ

β1δ2
K

]
= Ψ

fK
β1δK

R(γ∗B) + Ψ
fK
β1δK

[
β1(δ2

GpK + 2δ2
Kψ) + 2fKδG(fKδG − δKfG)

δK
+ β1δKψ

]
= Ψ

fK
β1δK

R(γ∗B) + Ψ ·
[
fK
β1δK

R(γ∗B)

]
.

Thus, 2β0δGD + R(γ∗B)a∗(γ∗B) > 0 is equivalent to fK
β1δK

R(γ∗B) + fK
β1δK

R(γ∗B) > 2 q
β0
R(γ∗B)⇔ q < β0fK

β1δK
, which is

satisfied since q < q̄
def
= β0fKψ

R
≤ β0fK

β1δK
.

In order to see that a3 >
2β0δG(−D)
R(γ∗

B
)

, note that a3 > a1 >
2β0δG(−D)

R
> 2β0δG(−D)

R+ Ψ
δK

= 2β0δG(−D)
R(γ∗

B
)

.

If q ≥ q3, then the gas supplier’s profits are

(γ∗B − ψ)
[2β0δK(δKfG − δGfK) +Q · a∗M ]2

4Ψ(γ∗B)2

=
Ψ

β1δ2
K4(2Ψ)2

2β0δK(δKfG − δGfK) +Q
2
[
β0(fKδKψ + fGδGpK) + β0fK

β1δK
Ψ− 2qΨ

]
Φ + (β1pK + 2f2

K) Ψ
β1δ

2
K

2

=
1

16β1δ2
KΨ ·

[
Φ + (β1pK + 2f2

K) Ψ
β1δ

2
K

]2 [2β0δK(δKfG − δGfK)

(
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

)

+ 2Q

(
β0(fKδKψ + fGδGpK) +

β0fK
β1δK

Ψ

)
− 2Q2qΨ

]2

=
(2β0fGpK2Ψ− 2Q2qΨ)2

16β1δ2
KΨ ·

[
Φ + (β1pK + 2f2

K) Ψ
β1δ

2
K

]2 =
β1δ

2
KΨ · (β0fGpK − q Q)2

[β1δ2
KΦ + (β1pK + 2f2

K)Ψ]2
,

where the latter equality follows from

β1δ
2
K

[
δK(δKfG − δGfK)

(
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

)
+Q

(
(fKδKψ + fGδGpK) +

fK
β1δK

Ψ

)]
= δK(δKfG − δGfK)β1δ

2
K(β1pK + 2f2

K)ψ + δK(δKfG − δGfK)β1δ
2
K2f2

GpK
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+ δK(δKfG − δGfK)(β1pK + 2f2
K)β1δ

2
GpK + δK(δKfG − δGfK)(β1pK + 2f2

K)β1δ
2
Kψ

+ δK(δKfG − δGfK)(β1pK + 2f2
K)2D2 + [β1δGpK + 2fK(fKδG − fGδK)]fKδKψβ1δ

2
K

+ [β1δGpK + 2fK(fKδG − fGδK)]fGδGpKβ1δ
2
K + [β1δGpK + 2fK(fKδG − fGδK)]fKδKβ1δ

2
GpK

+ [β1δGpK + 2fK(fKδG − fGδK)]fKδKβ1δ
2
Kψ + [β1δGpK + 2fK(fKδG − fGδK)]fKδK2D2

= δK(δKfG)β1δ
2
K(β1pK)ψ + δK(δKfG − δGfK)β1δ

2
K2f2

GpK + δK(δKfG)(β1pK)β1δ
2
GpK

+ δK(δKfG)(β1pK)β1δ
2
Kψ + δK(δKfG)(β1pK)2D2 + [β1δGpK + 2fK(fKδG − fGδK)]fGδGpKβ1δ

2
K

= β1δ
2
K fGpK [2fGδK(δKfG − δGfK) + 2β1δ

2
Kψ + 2β1δ

2
GpK + 2fKδG(fKδG − fGδK) + 2D2]

= β1δ
2
K fGpK 2Ψ.

If q < q3, then the gas supplier’s profits are

(γ∗B − ψ)
[2β0δK(−D) +Qa3]2

4Ψ(γ∗B)2
= (γ∗B − ψ)

[2β0δK(−D) +Qa∗M (q3)]2

4Ψ(γ∗B)2
=

β1δ
2
KΨ · (β0fGpK − q3 Q)2

[β1δ2
KΦ + (β1pK + 2f2

K)Ψ]2
,

which equals (β0fGpK)2

4Φ·(β1pK+2f2
K

)
since

β0fGpK + q3(−Q) = β0fGpK + (−Q)
β0fGpK

2Ψ · (−Q)

[√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
− 2Ψ

]

=
β0fGpK

2Ψ

[
2Ψ +

√
Ψ

Φ
· β1δ2

K

β1pK + 2f2
K

·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
− 2Ψ

]
.

C.5 Calculations for Lemma 2.1g

Note that WC
A (q) < WC

B (q) is equivalent to (the true statement)

−2β0β1q(fKδKψ + fGδGpK) + β2
0(f2

Kψ + f2
GpK)

β1Φ
<
β1[β0(fKδKψ + fGδGpK)− qΨ]2 + β2

0D
2Φ

β1ΨΦ

⇔ β2
0(f2

Kψ + f2
GpK)Ψ < β1β

2
0(fKδKψ + fGδGpK)2 + β1q

2Ψ2 + β2
0D

2Φ

⇔ β1q
2Ψ2 + β1β

2
0(fKδKψ + fGδGpK)2 + β2

0D
2β1pKψ − β2

0(f2
Kψ + f2

GpK)β1(δ2
GpK + δ2

Kψ) > 0

⇔ β1q
2Ψ2 + β1β

2
0 · [(fKδKψ + fGδGpK)2 + ψpKD

2 − (f2
Kψ + f2

GpK)(δ2
GpK + δ2

Kψ)] > 0

⇔ β1q
2Ψ2 > 0.

C.6 Calculations for Lemma 2.1h

First, note that WM
B (q)−WM

A (q) = WM
B (q)−WM

p=0(q) = WM
B (q)−

[
WM (q)− 1

2Φ

(
Ψ +

β1δ
2
K

β1pK+2f2
K

Φ
)
q2
]

= [WM
B (q)−WM (q)] +

1

2Φ

(
Ψ +

β1δ
2
K

β1pK + 2f2
K

Φ

)
q2 =

C0 + C1 · q + β1Ψ 4ΨΦ · q2

2β1ΨΦ ·
(

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
) ,

where C1 and C0 are as defined in the calculations for Lemma 3a . Therefore,

WM
B (q)−WM

A (q) =
−β2

0p
2
Kf

2
GQ

2 + 2β0pKfGQ
3 · q + 4ΨΦ · (β1pK + 2f2

K)β1δ
2
K · q2

2Φ ·
(

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
)

(β1pK + 2f2
K)β1δ2

K

.

The positive argument at which this convex quadratic function of q takes the value zero is given by

β0pKfG
(
−Q3 −Q

√
Q4 + 4ΨΦ · (β1pK + 2f2

K)β1δ2
K

)
4ΨΦ · (β1pK + 2f2

K)β1δ2
K

=
β0pKfG

[
−Q3 −Q · [β1δ

2
KΦ + (β1pK + 2f2

K)Ψ]
]

4ΨΦ · (β1pK + 2f2
K)β1δ2

K

=
β0pKfG(−Q)

[
[(β1pK + 2f2

K)Ψ− β1δ
2
KΦ] + [β1δ

2
KΦ + (β1pK + 2f2

K)Ψ]
]

4ΨΦ · (β1pK + 2f2
K)β1δ2

K

=
β0pKfG(−Q)

[
2(β1pK + 2f2

K)Ψ
]

4ΨΦ · (β1pK + 2f2
K)β1δ2

K

= q̃(Q).

Finally, q3 < q̃(Q) is equivalent to (the true statement)

1

(−Q)

[√
Ψ

Φ

β1δ2
K

(β1pK + 2f2
K)

(
Φ +

β1pK + 2f2
K

β1δ2
K

Ψ

)
− 2Ψ

]
<
−Q3 −Q[β1δ

2
KΦ + (β1pK + 2f2

K)Ψ]

2Φ · (β1pK + 2f2
K)β1δ2

K

⇔

[√
Ψ

Φ

β1δ2
K

(β1pK + 2f2
K)

(
Φ +

β1pK + 2f2
K

β1δ2
K

Ψ

)
− 2Ψ

]
2Φ · (β1pK + 2f2

K)β1δ
2
K

< Q4 +Q2[β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]
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⇔
√

4ΨΦ · (β1pK + 2f2
K)β1δ2

K · [β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]− 4ΨΦ · (β1pK + 2f2
K)β1δ

2
K

−Q4 −Q2[β1δ
2
KΦ + (β1pK + 2f2

K)Ψ] < 0

⇔
√

4ΨΦ · (β1pK + 2f2
K)β1δ2

K · [β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]−
[
β1δ

2
KΦ + (β1pK + 2f2

K)Ψ
]2

−Q2[β1δ
2
KΦ + (β1pK + 2f2

K)Ψ] < 0

⇔ −[β1δ
2
KΦ + (β1pK + 2f2

K)Ψ] ·
[
[β1δ

2
KΦ + (β1pK + 2f2

K)Ψ]−
√

4ΨΦ · (β1pK + 2f2
K)β1δ2

K +Q2

]
< 0

⇔ [β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]−
√

4ΨΦ · (β1pK + 2f2
K)β1δ2

K +Q2 > 0

⇔ [β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]−
√

4ΨΦ · (β1pK + 2f2
K)β1δ2

K − [β1δ
2
KΦ− (β1pK + 2f2

K)Ψ] > 0

⇔ [β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]− [β1δ
2
KΦ− (β1pK + 2f2

K)Ψ] >
√

4ΨΦ · (β1pK + 2f2
K)β1δ2

K

⇔ 2(β1pK + 2f2
K)Ψ >

√
4ΨΦ · (β1pK + 2f2

K)β1δ2
K ⇔ 4(β1pK + 2f2

K)2Ψ2 > 4ΨΦ · (β1pK + 2f2
K)β1δ

2
K

⇔ (β1pK + 2f2
K)Ψ > β1δ

2
KΦ ⇔ β1δ

2
KΦ− (β1pK + 2f2

K)Ψ < 0

⇔ −Q2 < 0.

C.7 Calculations for Lemma 2.2c

To see that a5 < a4 < a2 < a1 < a0, follow the corresponding calculations for Lemma 2.1c. To see that a−1 < a4,

note that in our calculations for Lemma 2.1f we show that

a4 −
4Ψ

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
q (= a∗(γ∗B) ) >

2β0δG(−D)

R(γ∗B)
(= a−1) ⇔ q <

β0fK
β1δK

.

To see that γ̂(a) is decreasing in a, cf. our calculations for Lemma 2.1c.

Finally, to see that (γ̂(a)− ψ) · [2β0δK(−D) + aQ]2

4Ψ(γ̂(a))2
=

(γ̂(a)− ψ) · (β0pKfG)2

Φ(γ̂(a))2
= Γ̂A(a),

where Γ̂A(a)
def
=

[Φ·a−2β0(fKδKψ+fGδGpK)]·[2β0fKδK−(β1pK+2f2
K)·a]

4Q2 , note that the first of the two equalities is satis-

fied if γ̂(a) = ψ, which is equivalent to a = a1. If a 6= a1, then this equality is equivalent to

[2β0δK(−D) + aQ]2

4Ψ(γ̂(a))2
=

(β0pKfG)2

Φ(γ̂(a))2

⇔ Φ(γ̂(a))2[2β0δK(−D) + aQ]2 = (β0pKfG)24Ψ(γ̂(a))2

⇔ Φ(γ̂(a))[2β0δK(−D) + aQ] = (β0pKfG)2Ψ(γ̂(a))

⇔ (β1pK + 2f2
K)[2β0δK(−D) + aQ] · γ̂(a)− β0pKfG2β1δ

2
K · γ̂(a)

= −2f2
GpK [2β0δK(−D) + aQ] + β0pKfG2(β1δ

2
GpK + 2D2)

⇔ [(β1pK + 2f2
K)a− 2β0δKfK ]Q · γ̂(a) = Q [−2f2

GpKa+ 2β0pKfGδG]

⇔ γ̂(a) =
2f2
GpK · a− 2β0fGδGpK

2β0δKfK − a · (β1pK + 2f2
K)
,

a true statement. The second of the two equalities follows from

(γ̂(a)− ψ) · (β0pKfG)2

Φ(γ̂(a))2
=

(
2f2
GpK ·a−2β0fGδGpK

2β0δKfK−a·(β1pK+2f2
K

)
− ψ

)
· (β0pKfG)2[

(β1pK + 2f2
K)

2f2
G
pK ·a−2β0fGδGpK

2β0δKfK−a·(β1pK+2f2
K

)
+ 2f2

GpK
]2

=
[a · 2f2

GpK − 2β0fGδGpK − 2β0δKfKψ + a · (β1pK + 2f2
K)ψ] · (β0pKfG)2 · [2β0δKfK − a · (β1pK + 2f2

K)]

[(β1pK + 2f2
K)[a · 2f2

GpK − 2β0fGδGpK ] + 2f2
GpK [2β0δKfK − a · (β1pK + 2f2

K)]]2

=
[Φ · a− 2β0(fKδKψ + fGδGpK)] · (β0pKfG)2 · [2β0δKfK − a · (β1pK + 2f2

K)]

(−2β0fGpKQ)2 = Γ̂A(a).

C.8 Calculations for Lemma 2.2e

Note that ŴM (a) equals

2β0[β0(f2
K γ̂(a) + f2

GpK)− 2β1q(fKδK γ̂(a) + fGδGpK)]

2β1Φ(γ̂(a))

=
β0

β1
· (β0f

2
K − 2β1fKδKq) · γ̂(a) + β0f

2
GpK − 2β1qfGδGpK

(β1pK + 2f2
K) · γ̂(a) + 2f2

GpK
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=
β0

β1
· [β0f

2
K − 2β1fKδKq][a2f2

GpK − 2β0fGδGpK ] + [β0f
2
GpK − 2β1qfGδGpK ][2β0fKδK − a(β1pK + 2f2

K)]

(β1pK + 2f2
K)[a · 2f2

GpK − 2β0fGδGpK ] + 2f2
GpK [2β0fKδK − a · (β1pK + 2f2

K)]

=
β0

β1
·

fGpK
[
(β0fK − 2β1δKq)2fGfK − (β1pK + 2f2

K)[β0fG − 2β1δGq]
]
a

[(β1pK + 2f2
K)2f2

GpK − (β1pK + 2f2
K)2f2

GpK ]a− (β1pK + 2f2
K)2β0fGδGpK + 2f2

GpK2β0fKδK

+
β0

β1
· −2β0fGδGpK [β0f

2
K − 2β1fKδKq] + 2β0fKδK [β0f

2
GpK − 2β1qfGδGpK ]

[(β1pK + 2f2
K)2f2

GpK − (β1pK + 2f2
K)2f2

GpK ]a− (β1pK + 2f2
K)2β0fGδGpK + 2f2

GpK2β0fKδK

=
β0

β1
· β1fGpK [2Q · q − β0fGpK ] a− 2β2

0pKfKfGD

−2β0fGpKQ
.

C.9 Calculations for Lemma 2.2h

First, note that
WM
B (q)−WM

A (q) =
−β2

0p
2
Kf

2
GQ

2 + 2β0pKfGQ
3 · q + 4ΨΦ · (β1pK + 2f2

K)β1δ
2
K · q2

2Φ ·
(

Φ +
β1pK+2f2

K

β1δ
2
K

Ψ
)

(β1pK + 2f2
K)β1δ2

K

(cf. our calculations for Lemma 2.1h). The positive argument at which this convex quadratic function of q takes

the value zero is given by
β0pKfG

[
−Q3 +Q

√
Q4 + 4ΨΦ · (β1pK + 2f2

K)β1δ2
K

]
4ΨΦ · (β1pK + 2f2

K)β1δ2
K

=
β0pKfG

[
−Q3 +Q [β1δ

2
KΦ + (β1pK + 2f2

K)Ψ]
]

4ΨΦ · (β1pK + 2f2
K)β1δ2

K

=
β0pKfGQ

[
[β1δ

2
KΦ− (β1pK + 2f2

K)Ψ] + [β1δ
2
KΦ + (β1pK + 2f2

K)Ψ]
]

4ΨΦ · (β1pK + 2f2
K)β1δ2

K

=
β0pKfGQ

(
2β1δ

2
KΦ
)

4ΨΦ · (β1pK + 2f2
K)β1δ2

K

= q̃(Q).

Finally, note that q̃(Q) < β0fGpK
2Q

is equivalent to 2Q2 < 2(β1pK + 2f2
K)Ψ ⇔ (β1pK + 2f2

K)Ψ − β1δ
2
KΦ <

(β1pK + 2f2
K)Ψ, a true statement.

C.10 Calculations for Lemma 2.3c

Note that C̄B = C̄A is equivalent to
β2

0D
2

4β1Ψ
=

β2
0p

2
Kf

2
G

4(β1pK+2f2
K

)Φ
, and thus to (the true statement)

(β1pK + 2f2
K)ΦD2 = Ψβ1p

2
Kf

2
G

⇔ Φ (−D)[(−D) + fKδG] = pKf
2
GΨ

⇔ Φ (−D)δK = pKfGΨ (= pKfG[β1δ
2
GpK + β1δ

2
Kψ + 2D2] )

⇔ Φ (−D)δK = pKfG[δG2fK(−D) + β1δ
2
Kψ + 2D2] (= pKfG[β1δ

2
Kψ + 2(−D)fGδK ] )

⇔ Φ (−D) = pKfG[β1δKψ + 2(−D)fG]

⇔ (β1pKψ + 2f2
Kψ + 2f2

GpK)(−D) = pKfGβ1δKψ + 2(−D)f2
GpK

⇔ (β1pKψ + 2f2
Kψ)(−D) = pKfGβ1δKψ

⇔ β1pKψ(−fKδG) + 2f2
Kψ(−D) = 0

⇔ Q = 0.

C.11 Calculations for Lemma 3a[
2β1ΨΦ ·

(
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

)]
·
[
WM
B −WM

]
= β1

[(
β0(fKδKψ + fGδGpK) +

β0fK
β1δK

Ψ

)
− 2qΨ

]2

Φ + β2
0D

2

(
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

)
Φ

− β1

(
Ψ +

β1δ
2
K

β1pK + 2f2
K

Φ

)
Ψ ·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
q2

+

[
2β1β0(fKδKψ + fGδGpK) + 2β0β1fKδK

Φ

β1pK + 2f2
K

]
Ψ ·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
q

−
[
β2

0(f2
Kψ + f2

GpK) + β2
0f

2
K

Φ

β1pK + 2f2
K

]
Ψ ·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
= C2 · q2 + C1 · q + C0 , where
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C2 = 4β1Ψ2Φ− β1

[
Ψ +

β1δ
2
K

β1pK + 2f2
K

Φ

]
Ψ ·
[
Φ +

β1pK + 2f2
K

β1δ2
K

Ψ

]
= β1Ψ ·

[
4ΨΦ− [(β1pK + 2f2

K)Ψ + β1δ
2
KΦ]2

β1δ2
K(β1pK + 2f2

K)

]
=
−β1Ψ · [(β1pK + 2f2

K)Ψ− β1δ
2
KΦ]2

β1δ2
K(β1pK + 2f2

K)

=
−β1ΨQ4

(β1pK + 2f2
K)β1δ2

K

< 0 ,

C1 = −2β1

(
β0(fKδKψ + fGδGpK) +

β0fK
β1δK

Ψ

)
2ΨΦ

+

(
2β1β0(fKδKψ + fGδGpK) + 2β0β1fKδK

Φ

β1pK + 2f2
K

)
Ψ ·
(

Φ +
β1pK + 2f2

K

β1δ2
K

Ψ

)
= 2β1β0Ψ ·

[
−(fKδKψ + fGδGpK)

(
Φ− β1pK + 2f2

K

β1δ2
K

Ψ

)
− fKδKΦ

β1δ2
K

(
Ψ− β1δ

2
K

β1pK + 2f2
K

Φ

)]
=

−2β0β1Ψ

(β1pK + 2f2
K)β1δ2

K

[
(fKδKψ + fGδGpK)(β1pK + 2f2

K)[β1δ
2
KΦ− (β1pK + 2f2

K)Ψ]

+ fKδKΦ · [(β1pK + 2f2
K)Ψ− β1δ

2
KΦ]

]
=

−2β0β1Ψ

(β1pK + 2f2
K)β1δ2

K

[β1δ
2
KΦ− (β1pK + 2f2

K)Ψ][fGδGpK(β1pK + 2f2
K)− fKδK2f2

GpK ]

=
−2β0β1Ψ

(β1pK + 2f2
K)β1δ2

K

(−Q2)fGpKQ =
β1Ψ2β0fGpKQ

3

(β1pK + 2f2
K)β1δ2

K

, and

C0 = β1

(
β0(fKδKψ + fGδGpK) +

β0fK
β1δK

Ψ

)2

Φ + β2
0D

2

[
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

]
Φ

−
[
β2

0(f2
Kψ + f2

GpK) + β2
0f

2
K

Φ

β1pK + 2f2
K

]
Ψ ·
[
Φ +

β1pK + 2f2
K

β1δ2
K

Ψ

]
=

β2
0

(β1pK + 2f2
K)β1δ2

K

· C̃0 with

C̃0 = β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K) + β1(2fKδKψ + 2fGδGpK)fKδKΨΦ · (β1pK + 2f2
K)

+D2Φ2β1δ
2
K(β1pK + 2f2

K) + (fKδG − fGδK)2(β1pK + 2f2
K)2ΨΦ

− (f2
Kψ + f2

GpK)ΨΦ · (β1pK + 2f2
K)β1δ

2
K − (f2

Kψ + f2
GpK)Ψ2 · (β1pK + 2f2

K)2 − f2
KΦ2Ψβ1δ

2
K

= β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K) + β1ψf
2
Kδ

2
KΨΦ · (β1pK + 2f2

K)

+D2Φ2β1δ
2
K(β1pK + 2f2

K) + (f2
Kδ

2
G + f2

Gδ
2
K)(β1pK + 2f2

K)2ΨΦ − (f2
Kψ + f2

GpK)Ψ2 · (β1pK + 2f2
K)2

− 2fKδKfGδG2f2
KΨΦ · (β1pK + 2f2

K) − f2
GpKΨΦ · (β1pK + 2f2

K)β1δ
2
K − f2

KΦ2Ψβ1δ
2
K

= β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K) + β1ψf
2
Kδ

2
KΨΦ · (β1pK + 2f2

K)

+D2Φ2β1δ
2
K(β1pK + 2f2

K) + f2
Kδ

2
Gβ1pK(β1pK + 2f2

K)ΨΦ + (f2
Kδ

2
G + f2

Gδ
2
K)2f2

K(β1pK + 2f2
K)ΨΦ

− 2fKδKfGδG2f2
KΨΦ · (β1pK + 2f2

K) − (f2
Kψ + f2

GpK)Ψ2 · (β1pK + 2f2
K)2 − f2

KΦ2Ψβ1δ
2
K

= β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K) − (f2
Kψ + f2

GpK)Ψ2 · (β1pK + 2f2
K)2 − f2

KΦ2Ψβ1δ
2
K

+D2Φ2β1δ
2
K(β1pK + 2f2

K) + β1(ψδ2
K + pKδ

2
G)f2

K(β1pK + 2f2
K)ΨΦ + 2f2

KD
2(β1pK + 2f2

K)ΨΦ

= β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K) − (f2
Kψ + f2

GpK)Ψ2 · (β1pK + 2f2
K)2 − f2

KΦ2Ψβ1δ
2
K

+D2Φ2β1δ
2
K(β1pK + 2f2

K) + Ψ2 · (β1pK + 2f2
K)f2

K [(β1pK + 2f2
K)ψ + 2f2

GpK ]

= β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K)

+ (fKδG − fGδK)2Φ2β1δ
2
K(β1pK + 2f2

K) − f2
GpKΨ2 · (β1pK + 2f2

K)β1pK − f2
KΦ2Ψβ1δ

2
K

= β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K) + f2
Gδ

2
KΦ2β1δ

2
Kβ1pK

−2fKδGfGδKΦ2β1δ
2
Kβ1pK − f2

GpKΨ2 · (β1pK + 2f2
K)β1pK − f2

Kβ1δ
2
KΦ2β1δ

2
Kψ

= β1(fKδKψ + fGδGpK)2Φβ1δ
2
K(β1pK + 2f2

K)

+ f2
Gδ

2
KΦβ1δ

2
Kβ1pK [(β1pK + 2f2

K)ψ + 2f2
GpK ] − 2fKδGfGδKΦβ1δ

2
Kβ1pK [(β1pK + 2f2

K)ψ + 2f2
GpK ]

−f2
Kβ1δ

2
KΦβ1δ

2
Kψ[(β1pK + 2f2

K)ψ + 2f2
GpK ] − f2

GpKΨ2 · (β1pK + 2f2
K)β1pK

= β2
1δ

2
KΦ · [f2

Gδ
2
Gp

2
K(β1pK + 2f2

K)− 4fKδKfGδGp
2
Kf

2
G + f2

Gδ
2
KpK(β1pKψ + 2f2

GpK)]

− f2
GpKΨ2 · (β1pK + 2f2

K)β1pK

= β2
1δ

2
KΦ f2

Gp
2
KΨ− f2

GpKΨ2 · (β1pK + 2f2
K)β1pK = p2

Kf
2
Gβ1Ψ [β1δ

2
KΦ−Ψ · (β1pK + 2f2

K)]

= p2
Kf

2
Gβ1Ψ · (−1)Q2 < 0 .

Thus,

WM
B (q)−WM (q) =

β1Ψ ·
[
q2 · (−1)Q4 + q · 2β0fGpKQ

3 + (−1)β2
0f

2
Gp

2
KQ

2
]

(β1pK + 2f2
K)β1δ2

K2β1ΨΦ ·
(

Φ +
(β1pK+2f2

K
)

β1δ
2
K

Ψ
) .
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C.12 Calculations for Lemma 3b

Γ(q)− ΓB(q) =
(β0pKfG − qQ)2

4Φ · (β1pK + 2f2
K)
− β1δ

2
KΨ · (β0pKfG − qQ)2

[β1δ2
KΦ + (β1pK + 2f2

K)Ψ]2

=
(β0pKfG − qQ)2 ·

[
[β1δ

2
KΦ + (β1pK + 2f2

K)Ψ]2 − 4ΨΦβ1δ
2
K(β1pK + 2f2

K)
]

4Φ · (β1pK + 2f2
K) [β1δ2

KΦ + (β1pK + 2f2
K)Ψ]2

=
(β0pKfG − qQ)2 ·

[
β1δ

2
KΦ− (β1pK + 2f2

K)Ψ
]2

4Φ · (β1pK + 2f2
K) [β1δ2

KΦ + (β1pK + 2f2
K)Ψ]2

=
(β0pKfG − qQ)2 ·Q4

4Φ · (β1pK + 2f2
K) [β1δ2

KΦ + (β1pK + 2f2
K)Ψ]2

.

With respect to the gas price, note that γ∗ < γ∗B ⇔ Φ
β1pK+2f2

K
< Ψ

β1δ
2
K
⇔ β1δ

2
KΦ−(β1pK+2f2

K)Ψ < 0⇔ −Q2 < 0,

a true statement. With respect to the demand for gas, note that G∗ > G∗B (⇔
√
G∗ >

√
G∗B) is equivalent to

β0pKfG − qQ
2Φ

>
2β0δK(−D)

[
Φ + (β1pK + 2f2

K) Ψ
β1δ

2
K

]
+ 2Q

[
β0(fKδKψ + fGδGpK) + β0fK

β1δK
Ψ
]
− 4QΨq

4Ψ ·
[
Φ + (β1pK + 2f2

K) Ψ
β1δ

2
K

]
⇔ β0pKfG4Ψ ·

[
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

]
− 2β0δK(δKfG − δGfK)

[
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

]
2Φ

− 2Q

[
β0(fKδKψ + fGδGpK) +

β0fK
β1δK

Ψ

]
2Φ > qQ4Ψ ·

[
Φ + (β1pK + 2f2

K)
Ψ

β1δ2
K

]
− 4QΨq2Φ.

The right-hand side of the latter inequality equals q ·4QΨ·(−1)
[
Φ− β1pK+2f2

K

β1δ
2
K

Ψ
]

= q ·4QΨ·(−1) −Q
2

β1δ
2
K

= q · 4Q
3Ψ

β1δ
2
K

,

and the left-hand side multiplied by
β1δ

2
K

4β0
equals

β1δ
2
KpKfGΨΦ + pKfGΨ2 · (β1pK + 2f2

K)− δK(δKfG − δGfK)Φ2β1δ
2
K

− δK(δKfG − δGfK)Φ · (β1pK + 2f2
K)Ψ−QΦ · (fKδKψ + fGδGpK)β1δ

2
K −QΦfKδKΨ

= pKfGΨ2 · (β1pK + 2f2
K)− δK(δKfG − δGfK)Φ2β1δ

2
K −QΦ · (fKδKψ + fGδGpK)β1δ

2
K

= pKfG · [Ψ2 · (β1pK + 2f2
K)− δ2

KΦβ1δ
2
Kβ1ψ − 2fGδK(δKfG − δGfK)Φβ1δ

2
K

−β1δ
2
GpKΦβ1δ

2
K − 2fKδG(fKδG − fGδK)Φβ1δ

2
K ]

= pKfG ·
[
Ψ2 · (β1pK + 2f2

K)−
(
β1(δ2

Kψ + δ2
GpK) + 2(δKfG − δGfK)2)Φβ1δ

2
K

]
= pKfG ·

[
Ψ2 · (β1pK + 2f2

K)−ΨΦβ1δ
2
K

]
= pKfGΨ · (β1pK + 2f2

K)

[
Ψ− β1δ

2
K

β1pK + 2f2
K

Φ

]
= pKfGΨQ2 .

Thus, G∗ > G∗B ⇔ 4β0
β1δ

2
K
pKfGΨQ2 > q · 4Q3Ψ

β1δ
2
K

, which is, if Q 6= 0, equivalent to β0pKfG > q ·Q, a true statement

(note that q < q̄
def
= β0fKψ

R
≤ β0fGpK

Q
if Q > 0).

Finally, G∗ =
(
β0pKfG−q Q

2Φ

)2

>
(
β0pKfG

2Φ

)2

= G∗A if Q < 0, and G∗ < G∗A if Q > 0.

C.13 Calculations for Lemma 3c

WC
B (q) = WC(q) ⇔ 1

β1ΨΦ
[β1(β0(fKδKψ + fGδGpK)− qΨ)2 + β2

0D
2Φ]

=
1

β1Φ
[β1Ψ · q2 − 2β1β0(fKδKψ + fGδGpK) · q + β2

0(f2
Kψ + f2

GpK)]

⇔ β1(fKδKψ + fGδGpK)2 +D2Φ = (f2
Kψ + f2

GpK)Ψ

⇔ β1(fKδKψ + fGδGpK)2 + β1pKψD
2 = (f2

Kψ + f2
GpK)(β1δ

2
GpK + β1δ

2
Kψ)

⇔ 2fKδKψfGδGpK + pKψD
2 = f2

Kψδ
2
GpK + f2

GpKδ
2
Kψ

⇔ D2 = f2
Kδ

2
G + f2

Gδ
2
K − 2fKδGfGδK (= D2).

C.14 Calculations for Lemma 4

If Q < 0, then q̃(Q) < β0fKψ
R

is equivalent to A2 · ψ2 +A1 · ψ +A0 > 0, where A2 := 2fK(β1pK + 2f2
K)β1δ

2
K > 0

and A1 := β1δKpKfG[β1δGpK + 2fK(fKδG + fGδK)] > 0.

If Q > 0, then q̃(Q) < β0fKψ
R

is equivalent to B2 ·ψ2 +B1 ·ψ+B0 > 0, where B2 := 2fKβ1δ
2
K(β1pK +2f2

K) > 0.
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