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Abstract

We show that a steeply increasing workload before a deadline is com-
patible with time-consistent preferences. The key departure from the
literature is that we consider a stochastic environment where success
of effort is not guaranteed.
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1 INTRODUCTION

Life is full of tasks which have to be completed by a prespecified date. People
sometimes delay the completion of such tasks.1 Their workload is steeply
increasing before the deadline. The literature explains this phenomenon by
use of time-inconsistent, present-biased preferences (O’Donoghue and Rabin,
1999, 2001, 2007; Akerlof, 1991; Brocas and Carrillo, 2001). In contrast,
typical models with time consistency predict that a person distributes her
effort equally across time (O’Donoghue and Rabin, 2007). Because of dis-
counting, a time-consistent person may optimally choose a slightly increasing
workload (Fischer, 2001). However, “quantitatively, the fully rational model
appears to require an extremely high rate of time preference or elasticity
of intertemporal substitution to generate serious procrastination” (Fischer,
2001, p. 249). That is, a steeply increasing workload is seen as incompatible
with the time consistency assumption.

We show that in a stochastic environment, where success of effort is
not guaranteed, a time-consistent person may optimally choose a steeply
increasing workload. Therefore, we provide—to the best of our knowledge—
the first explanation why a steeply increasing workload can be fully rational.

∗Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Str. 10,
53113 Bonn, Germany, weinschenk@coll.mpg.de. I thank an anonymous referee,
Christoph Engel, Martin Hellwig, Fabian Herweg, Oliver Himmler, Aniol Llorente-Saguer,
Daniel Müller, and Dan Silverman, as well as seminar participants at the Max Planck
Institute and at the EEA Conference 2010 in Glasgow for helpful comments and sugges-
tions.

1See Ellis and Knaus (1977), Solomon and Rothblum (1984), McCown et al. (1987),
and Ariely and Wertenbroch (2002).
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2 THE MODEL

The person has to solve some task within T ≥ 2 periods. In every period
t ∈ {1, ..., T}, she chooses how much effort pt she wants to invest. We
measure effort in units of success, so pt ∈ [0, 1]. The effort costs in period
t are c = f(pt). We suppose that zero effort is costless, f(0) = 0, and that
effort costs are increasing and convex: f ′(pt) > 0 for all pt > 0 and f ′′(pt) > 0
for all pt. To guarantee inner solutions we suppose that f

′(0) = 0. We denote
the expected effort costs of solving the task under the optimal strategy, given
that the task is not solved at the beginning of period t, by Et[C].

3 ANALYSIS

When the task is not solved at the beginning of period T , the person has to
make sure that the task is solved in T and therefore chooses effort p∗T = 1.
In period t < T , and when the task is not yet solved, the person minimizes
the expected efforts cost of a solution

Et[C] = f(p∗t ) + (1− p∗t )Et+1[C] (1)

over pt. The first-order condition is

f ′(p∗t )− Et+1[C] = 0. (2)

With p∗T = 1, (1) and (2) determine the optimal sequence of efforts (p∗1, ..., p
∗

t ,
..., p∗T ) which the person chooses when the task is not yet solved. When the
task is solved, it is optimal to choose zero effort.

From (2) we see that the person invests more, the higher are the expected
effort costs of solving the task under the optimal strategy:

dp∗t
dEt+1[C]

=
1

f ′′(p∗t )
> 0. (3)

We now show that Et[C] < Et+1[C] ∀t ≤ T −1. We start with t = T −1.
Rewrite (1) as

ET−1[C] = ET [C] + pT−1

(

f(pT−1)

pT−1

− ET [C]

)

. (4)

The person can choose a small pT−1. Then
(

f(pT−1)

pT−1

− ET [C]

)

< 0, (5)

because f(pT−1)/pT−1 is then small,2 while ET [C] = f(1). Note that the
person need not choose a small pT−1; but because she minimizes ET−1[C],

2More precisely, due to convexity of f , 0 ≤ f(p)
p

< f ′(p) and hence limp→0
f(p)
p

= 0.
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(4) and (5) imply that ET−1[C] < ET [C] must hold. The same steps can be
repeated for period t = T − 2 and so on.

We claim that the effort levels which the person optimally chooses are
increasing over time:

0 < p∗t < p∗t+1, ∀t ≤ T − 1. (6)

First, ET−1[C] < ET [C], ET [C] = f(1), and (4) imply that p∗T−1 < p∗T = 1.
Second, the finding that Et[C] < Et+1[C] for all t ≤ T − 1 implies, together
with (3), that p∗t < p∗t+1 ∀t ≤ T − 2. Finally, pt = 0 would imply, see (1),
Et[C] = Et+1[C], which cannot hold.

The assumption that f ′(p) > 0 for p > 0 and (6) imply that effort costs
are increasing over time as well:

f(p∗t ) < f(p∗t+1), ∀t ≤ T − 1. (7)

The next proposition summarizes.

P r o p o s i t i o n 1: Given that the task is not yet solved, the workload,

f(p∗t ), is increasing over time.

The intuition is as follows. Shortly before the deadline, solving the task
becomes urgent and the person consequently invests a lot of effort. In early
periods, the person could also decide to invest a lot of effort and therefore
likely solve the task then already. However, this is not optimal. Rather, the
person optimally invests little effort to solve the task possibly for low effort
costs.3 Therefore, the option of solving the task in later periods provides
incentives for the person to try to solve the task with little effort in early
periods.

As a concrete example, suppose that a schoolchild has to complete a
homework within two days. If the work is not completed on day 1, the child
has to invest a lot of effort on day 2 to complete the work for sure. For
example, the child may do its homework independently, which causes high
effort costs. On day 1, the child optimally invests less effort to minimize
the expected effort costs of solving the task. For example, the child may
browse the web for a solution, which causes low effort costs, but is not sure
to succeed.

4 PARAMETRIC EXAMPLE

Suppose
f(p) = αpγ , (8)

3Notice that for low levels of effort the likelihood of success is large relative to the
effort costs: p/f(p) is decreasing in p due to f(0) = 0 and f ′′ > 0. Loosely speaking,
investing little effort gives the person a lot of “bang for the buck”.
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with α > 0, γ > 1, and p ∈ [0, 1]. Since the expected costs of a solution
Et[C] are also linear in α, we can normalize α = 1.

Figure 1 shows for selected values of γ how the optimal effort, the effort
costs, and the expected costs of a solution evolve over a timespan of 10
periods.4 The diagrams illustrate that a steeply increasing workload can
be optimal. It is hard to qualify what “steeply” means. Nevertheless, we
think that, for example, the quadrupling of the effort costs f(p∗t ) from the
penultimate to the last period in the quadratic cost specification (γ = 2)
can be seen as a steep increase.
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F i g u r e 1: Examples with γ = 1.5 (top left), γ = 2 (top right), γ =
3 (bottom left), and γ = 5 (bottom right); p∗t (blue circles), f(p∗t ) (red
squares), and Et[C] (green triangles).

5 CONCLUSION AND EXTENSIONS

We offered a simple model where the success of effort is stochastic and
showed that a person with time-consistent preferences may optimally choose
a steeply increasing workload before a deadline. We next show that this re-
sult also holds when we consider (i) discounting and (ii) a setting where
solving the task is no longer mandatory but instead rewarded.

4When a shorter horizon, T < 10, is considered, one has to cut off the first 10 − T
periods of the diagrams.
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5.1 DISCOUNTING

What happens when future costs are discounted with factor δ ∈ (0, 1)? We
consider the simple case where f(p) = pγ and T = 2. In t = 2, the person
chooses p∗2 = 1. In t = 1, she minimizes, cf. (1),

pγ1 + δ(1− p1)1 (9)

over p1. This yields

p∗1 =

(

δ

γ

)
1

γ−1

. (10)

Observe that discounting has a negative impact on p∗1, which makes the
workload even more sharply increasing over time. Because p∗1 is continuous
in δ, discount factors close to 1 lead to results which are quantitatively very
similar to the ones without discounting.

5.2 REWARD

Some real-world situations may be better described by assuming that a task
does not have to be solved for sure, but rather that solving it is rewarded (or
equivalently, that failure is punished). Let the reward for solving the task
within the deadline be R > 0. We consider the case where T = 2. In t = 2,
the person is no longer forced to choose p2 = 1. She maximizes the expected
reward minus her effort costs:

max
p2

p2R− f(p2). (11)

If R ≥ f ′(1) the person chooses to solve the task for sure: p∗2 = 1. Otherwise,
p∗2 solves

f ′(p∗2) = R. (12)

In t = 1, she maximizes the expected reward minus her effort costs and also
takes into account that by solving the task now she foregoes the continuation
payoff of eventually solving the task in period 2:

max
p1

p1R− f(p1)− p1(p
∗

2R− f(p∗2)). (13)

We now prove that p∗1 < p∗2. Suppose, contrary to our claim, that p∗1 > p∗2.
Then p∗2 is smaller than 1 and solves (12). The first-order condition of (13)
is

f ′(p1) = R− (p∗2R− f(p∗2)). (14)

Comparing (12) and (14) clarifies that p∗1 cannot exceed p∗2 because the
continuation payoff is positive (due to 0 = f ′(0) < R). The same line of
arguments implies that p∗1 = p∗2 < 1 cannot hold. It remains to show that
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whenever p∗2 = 1, we have p∗1 < 1. If p∗2 = 1, the continuation payoff of
reaching period 2, when the task is not solved yet solved, is R− f(1). Using
this result, we see from (14) that p∗1 = 1 requires

f ′(1) ≤ f(1), (15)

which cannot hold, given the assumptions made on f . Because effort costs
are increasing, p∗1 < p∗2 implies that the workload is increasing over time:
f(p∗1) < f(p∗2).

APPENDIX: NUMERICAL RESULTS

Here are the numerical data of the T = 10 example for different values of
γ. The calculations were made with the software Microsoft Excel. E0[f(p

∗

t )]
denotes the unconditional expected effort costs of period t, from the perspec-
tive of period 0. The tables reveal that also the unconditional expected effort
costs (which can be interpreted as the expected workloads) are increasing
over time. Simulations show that this result holds more generally.

t pt f(pt) E0[f(p
∗

t )] Et[C]
1 0.120588060 0.041875158 0.041875158 0.499949295
2 0.131937950 0.047924170 0.042145087 0.520886874
3 0.145757348 0.055647504 0.042480421 0.544848959
4 0.162985877 0.065799858 0.042909093 0.572672711
5 0.185129507 0.079655078 0.043478108 0.605572640
6 0.214783103 0.099540580 0.044273711 0.645400179
7 0.256896533 0.130207909 0.045475005 0.695170469
8 0.322511812 0.183154856 0.047533864 0.760274424
9 0.444444444 0.296296296 0.052096990 0.851851852
10 1 1 0.097681856 1

Ta b l e 1: γ = 1.5.

t pt f(pt) E0[f(p
∗

t )] Et[C]
1 0.150178593 0.022553610 0.022553610 0.277803576
2 0.163553460 0.026749734 0.022732497 0.300357185
3 0.179699396 0.032291873 0.022954038 0.327106919
4 0.199624333 0.039849875 0.023236240 0.359398792
5 0.224918499 0.050588331 0.023609300 0.399248667
6 0.258270264 0.066703529 0.024128424 0.449836998
7 0.304687500 0.092834473 0.024907785 0.516540527
8 0.375 0.140625 0.026234235 0.609375
9 0.5 0.25 0.029149150 0.75
10 1 1 0.058298299 1

Ta b l e 2: γ = 2.
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t pt f(pt) E0[f(p
∗

t )] Et[C]
1 0.200609649 0.008073381 0.008073381 0.104585932
2 0.216904170 0.010204781 0.008157604 0.120732694
3 0.236316697 0.013197243 0.008261464 0.141142257
4 0.259903612 0.017556460 0.008393132 0.167536743
5 0.289293373 0.024211152 0.008566252 0.202649663
6 0.327163966 0.035018408 0.008805665 0.251071967
7 0.378338133 0.054155223 0.009162529 0.321108782
8 0.452806000 0.092840296 0.009764854 0.429419228
9 0.577350269 0.192450090 0.011076146 0.615099821
10 1 1 0.024324905 1

Ta b l e 3: γ = 3.

t pt f(pt) E0[f(p
∗

t )] Et[C]
1 0.278513901 0.001675847 0.001675847 0.023382131
2 0.298148091 0.002355918 0.001699762 0.030085519
3 0.321121843 0.003414674 0.001729110 0.039509191
4 0.348458374 0.005137532 0.001766118 0.053167886
5 0.381688940 0.008101172 0.001814493 0.073718014
6 0.423246156 0.013582043 0.001880960 0.106122704
7 0.477334268 0.024780671 0.001979329 0.160450877
8 0.552233245 0.051358548 0.002144084 0.259573562
9 0.668740305 0.133748061 0.002500163 0.465007756
10 1 1 0.006192264 1

Ta b l e 4: γ = 5.
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