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Abstract

We develop a parsimonious model of bubbles based on the assumption of imprecisely
known market depth. In a speculative bubble, bankers (traders) drive the price above
its fundamental value in a dynamic way, driven by rational expectations about future
price developments. At a previously unknown date, the bubble will endogenously
burst. We provide a general condition for the possibility of bubbles depending on
the risk-free rate, uncertainty about market depth, banks’ degree of leverage, and
bankers’ bonus structure. This allows us to discuss several policy measures. Bubbles
always reduce aggregate welfare. Households are nevertheless willing to lend to bankers
when bubbles are likely. Among others, capping bonuses, minimum leverage ratios,
certain monetary policy rules, and a correctly implemented Tobin tax can prevent
their occurrence. Implemented incorrectly, however, some of these measures—bonus
regulations in particular—backfire and facilitate bubbles.
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are our own. Financial support of the DFG under project number EN892/1 is gratefully acknowledged. A
former version of this paper was called “On the Existence and Prevention of Speculative Bubbles”.



1 Introduction

Under what conditions can asset-price bubbles emerge? Can the design of bank traders’
compensation schemes facilitate their occurrence? Which policies can prevent them? In
the light of recent economic experience, these questions seem important and topical. Al-
though the phenomenon of bubbles has long been recognized, economic policy has been
unable to prevent their repeated occurrence in different settings and circumstances. In
this paper, we propose a fundamental mechanism that fosters the emergence of bubbles,
based on a minimal set of assumptions. In fact, we believe that this mechanism belongs
to the simplest and most general ones that can give rise to bubbles. Developing a broadly
applicable understanding should eventually help to guide policymakers. To this end, we
build a theoretical dynamic model and derive analytical conditions under which bubbles
can occur. We show that such bubbles reduce welfare and discuss various policy measures
that can prevent them, such as caps on bankers’ bonuses.

Our workhorse model is based on the fundamental assumption of finite but imprecisely
known market depth, as one important aspect of market liquidity. Market depth is defined
here as the maximum amount of money that a market can attract. No further assumption
about asymmetric or incomplete information, the relationship between the growth rate of
the economy and the real interest rate, irrationality of agents, changes in fundamentals or
the like are needed; this is the first main contribution of this paper. Uncertainty about
future market depth allows a bubble to continue growing each period with an endogenous
probability. Traders are rational and perfectly informed, aside from market depth. They
are only willing to invest in a bubble if they believe that there can be yet another future
market participant to whom, later, they can sell at an even higher price. We thus combine
two polar cases. Blanchard and Watson (1982) show in a nutshell that price bubbles are
possible if an economy has potentially infinite market depth. The expectation of prices
that rise further and further can then be rationalized. Tirole (1982) takes the opposite
position and shows that in a simple finite economy, bubbles are impossible.1 Our model
takes an intermediate position, in which the possible existence of bubbles depends on
a number of parameters, in particular bankers’ bonuses. “Can high-powered incentive
schemes for bank traders foster the sort of speculation that drives bubbles?” or, more
generally: “what circumstances make bubbles possible?” are questions that can thus be

1Also Santos and Woodford (1997) show that the conditions for the existence of bubbles are very
restrictive if one assumes a fixed number of households that participate in the asset market and that own
finite aggregate endowments. Note that a stochastic growth rate of the economy would induce an uncertain
future market size, as is assumed here. The model of Zeira (1999) is similar in spirit to our model as he also
assumes an unknown market size after, e. g., a financial liberalization. This uncertainty, however, creates
booms and crashes of an asset’s price via its influence on its fundamental value, above which the price
cannot rise. Similarly, Allen and Gale (2000) show in a two-period model that expected expansions in
credit can generate uncertainty about the steady-state price, which influences prices in previous periods.
Prices can then also fall depending on the realized expansion of credit. In Froot and Obstfeld (1991),
asset prices can also overreact to movements in fundamentals but are nevertheless linked to them. In our
model, bubbles drive asset prices dynamically above their steady-state prices that are constant and known
to all agents. Furthermore, no expected or realized changes in exogenous variables are needed to generate
bubbles.
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asked and answered. Policy implications ensue immediately; these are the second main
contribution of the paper.

For a low degree of uncertainty about market depth, the highest possible price of an asset
can be computed sufficiently accurately. By backward induction, no bubble can then exist
in the first place. For a higher degree of uncertainty, bubbles can emerge but will endoge-
nously burst at an unknown date. Our assumption of finite but imprecisely known market
depth therefore endogenously determines a time-varying probability of bursting; in Blan-
chard and Watson (1982), this probability is exogenous. Assuming imprecise information
about market depth seems natural in light of increasingly complex and opaque financial
markets. The recent financial crisis in particular has shown that domestic and, even more
so, international capital flows can be very intransparent. The size and end point of these
capital flows are not precisely predictable, such that the maximum amount of resources
that can flow into a particular market can only be estimated.

In our model, a steady-state price always exists. We define a bubble as a price path that
deviates from this steady state. Therefore, bubbles exist if and only if there are multiple
equilibrium price paths. In such a bubble, traders are aware that they are in a bubble.2

A high price reduces the probability that current asset holders will find future buyers at
an even higher price. Given this increased risk, buyers demand a higher expected return
from the asset. In a bubble, this accelerator mechanism increases expected prices over
time until the bubble collapses because the previously unknown market depth is reached
(i. e., the current owners of the asset do not find buyers), the underlying fundamental
breaks down (e. g., due to bankruptcy of the issuing firm), or until a sudden change in
agents’ expectations about future prices occurs.

While imprecise information about market depth alone can already lead to the emergence
of bubbles, additionally assuming that traders are leveraged increases the parameter space
in which bubbles are possible significantly. In this setting, traders borrow from rational,
risk-neutral households in addition to investing their own funds. These households know
whether a bubble exists. They can anticipate but not monitor the behavior of traders, con-
stituting the only friction. Leveraged traders behave as if they were risk-loving, investing
in situations that they would deem too risky if they were only able to invest own funds.3

They profit strongly from advancing asset prices, but their losses are limited to their own
invested funds. The same results are obtained if one assumes that an investor delegates
investment to a trader (fund manager), whose compensation includes bonus payments that

2Conlon (2004) argues that in many bubble periods, the overvaluation of assets was widely discussed.
Referring to the dot-com bubble, Brunnermeier and Nagel (2004) provide evidence that hedge funds were
riding the bubble, a result similar to a previous finding by Wermers (1999). The authors relate this to a
short-term horizon of the managers, among other elements. This notion is consistent with our model.

3Examining the effects of leverage alone, we find that the induced risk appetite of risk-neutral traders
pushes asset prices above their fundamental values (as already shown by Allen and Gale, 2000). Because
of limited liability in case of a low or zero return, a trader can increase her expected payoff by engaging
in riskier assets. Equilibrium asset prices are therefore driven above fundamentals but in a static way.
These price deviations are not induced by expectations about higher future prices (speculation) and are
not subject to sudden corrections (bursts).
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cannot become negative.4 Hence, the model directly applies to any type of intermediated
finance with limited liability, such as through banks, investment banks, insurance compa-
nies, and private equity firms as well as to non-intermediated, debt-financed investments.
We show that depending on traders’ investment opportunities compared with those of
households, the latter may still be willing to lend their money to traders with limited
liability even if the existence of a bubble is common knowledge. Under certain parameter
constellations, however, bubbles can be ruled out if households’ participation constraints
will be violated at a future date. We provide a necessary and sufficient condition. Inter-
estingly, it turns out that households are rationally lending funds to the traders under the
same parameter constellations that support the development of bubbles, reducing their
expected payoff relative to a world without bubbles. Policy interventions that can prevent
bubbles are thus justified, as households cannot credibly commit to stop lending at a later
date.

Importantly, the model allows for bubbles in some parameter ranges but not in others:
the above-explained feedback between higher prices and increased fragility of the bubble
may not have a fixed point. If no fixed point exists, even at some future date, there is
no possible price path besides the fundamental path; bubbles are then unfeasible. Hence,
depending on the interaction of leverage, uncertainty about the market depth, riskiness of
the asset, and the risk-free interest rate, the prerequisites for bubbles may be fulfilled or
not.5 We can thus analyze several policies to prevent bubbles.

Bank traders’ compensation packages play an important role. Policy makers can deter
bubbles by reducing bonuses, but they need to be careful. Reducing bonuses by some
fixed factor is irrelevant for the emergence of bubbles. Increasing the target return above
which bonuses are paid even propagates bubbles. Only a sufficiently low cap on bonuses
effectively prevents the emergence of bubbles. Additionally, mandatory long-term com-
pensation and/or capital requirements for traders can render bubbles impossible.

One further widely discussed possible policy measure is a financial transaction (Tobin) tax.
We find that such a measure can actually enlarge the parameter range in which bubbles
are possible if the tax levied on all financial assets. If imposed only on potential bubble-
assets, the tax prevents the emergence of bubbles. Finally, a monetary policy (Taylor)
rule that considers asset-price inflation fulfills the same purpose. Gaĺı (2014) shows in a
different setup that higher interest rates set by the central bank in response to a bubble let

4According to the OECD database on institutional investors’ assets, in 2007, institutional investors
in the US managed assets worth 211.2% of GDP, showing the investors’ prominent role in investment
decisions. Furthermore, the assets’ size has grown steadily over the last decade with a yearly average
growth rate of 6.6% from 1995-2005 within the OECD(17) area (see Gonnard, Kim, and Ynesta, 2008).

5Using the latest US housing bubble as an example, we find that all conditions that are favorable for the
emergence of bubbles in our model were fulfilled. Low interest rates prevailed for a long period, whereas
increasingly international financial flows and more complex financial instruments obscured potential market
depth. Furthermore, the Securities and Exchange Commission’s 2004 decision to allow large investment
banks to assume more debt raised their leverage and further increased uncertainty about market depth.
Adelino, Schoar, and Severino (2015) find evidence that house buyers were indeed attracted by the prospect
of higher future prices. Kaminsky and Reinhart (1999), among others, also indicate an empirical connection
between financial liberalization, credit expansion, and bubble emergence.
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it actually grow faster instead of preventing its existence. The reason is that in equilibrium
the bubble component of an asset price needs to rise with an expected rate equal to the
interest rate. This effect is also present in our model. If the interest rate reacts sufficiently
strongly to asset-price movements, however, the implied increasing speed of the bubble
build-up lets the risk of an exhausting market depth outweigh the benefits of a higher
return, causing the bubble to burst. This creates a channel through which monetary
policy that “leans against the wind” can prevent the emergence of bubbles, generalizing
the result of Gaĺı.

Because of the common but imperfect information about the market depth, bubbles can
exist although the existence of a bubble is known to all agents in the model, just like
the fact that the initial sellers of a bubbly asset gain and some later traders will lose.
Furthermore, while households and traders are distinct, agents in each group are perfectly
symmetric and hold symmetric information and priors. The existence of bubbles under
these circumstances contrasts a series of papers that assume asymmetric traders, asym-
metric information or priors among them.6 An early contribution is Harrison and Kreps
(1978), where the option to sell an asset to more optimistic investors in the future raises its
price. In Allen, Morris, and Postlewaite (1993), private information of traders can drive
a price above its fundamental value as they hope to sell the asset to a ‘greater fool’. Sim-
ilarly, Scheinkman and Xiong (2003) and Bolton, Scheinkman, and Xiong (2006) assume
that buyers of an asset hope to sell it to overoptimistic agents in the next period. This
process is only possible in the context of heterogeneous beliefs. The presence of overop-
timistic agents and short-sale constraints creates bubbles also in Hong, Scheinkman, and
Xiong (2006) in which prices drop after an increase in asset float. In Conlon (2004), the
state of the world is known to the nth degree to asymmetrically informed traders, as-
signing higher-order beliefs a potentially important role. Allen, Morris, and Shin (2006)
also highlight the role of higher-order expectations if traders have asymmetric informa-
tion. Allen and Gorton (1993) and Barlevi (2008) show that asymmetry of information
between investors and heterogeneous managers can lead to deviations in prices from fun-
damentals if liquidity needs are stochastic. The model of Brunnermeier and Abreu (2003)
relies on dispersed opinions that, with the resulting coordination failure, enable bubbles
to occur. Froot, Scharfstein, and Stein (1992) analyze which information can influence
trading and potentially lead to herding equilibria, while Scharfstein and Stein (1990) rely
on unknown abilities of heterogenous managers to generate herding. In DeMarzo, Kaniel,
and Kremer (2008), herding can occur because of relative wealth concerns, which are not
present in our setup. Firms’ liquidity requirements that are not fully met by uninformed
investors can lead to bubbles in Farhi and Tirole (2012). In DeLong, Shleifer, Summers,
and Waldmann (1990), rational traders’ behavior is influenced by noise traders, who fol-
low positive-feedback strategies. In Plantin and Shin (2011), not all traders have market
access at a given date. Alternatively, Kocherlakota (2008) shows that bubbles are possible
if agents face a solvency constraint.7

6Brunnermeier (2001) provides a more extensive survey of bubble models based on asymmetric infor-
mation. Our overview of the literature on bubbles is by no means meant to be complete; this would require
far more space.

7Some other models rely on learning. Agents in Adam and Marcet (2010) use Bayesian updating about
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Another large strand of literature goes back to Samuelson (1958) and Tirole (1985), who
analyzed bubbles in overlapping-generations (OLG) models. In this setup, bubbles can
arise if the real interest rate is smaller than the growth rate of the economy (see also
Weil 1987). Hirano and Yanagawa (2014) study the effects of a bailout scheme in this
context. A contribution by Martin and Ventura (2012) overcomes this restriction by
assuming heterogeneous investors who differ in their productivity. Productive investors
demand liquidity, whereas unproductive investors supply it in the form of bubbly assets.
While the economy can be on average dynamically efficient, bubbles require that at least
some investments in the economy are dynamically inefficient. As common in the OLG-
growth setup, bubbles can theoretically grow forever but not faster than the growth rate
of the economy. Our model differs in these respects: since the probability of a collapse
of the bubble can rapidly reach high levels over time, prices can steeply rise far above
the fundamental value. Furthermore, bubbles cannot grow forever but will burst at some
point in time. Neither heterogenous investors, dynamic inefficiency, nor a positive growth
rate of the economy are necessary for bubble creation. Contrary to our setup, bubbles are
mostly welfare-enhancing in the mentioned types of OLG models.8

The remainder of this paper is organized as follows. Section 2 introduces the model and
then develops a steady-state (rational-expectations) equilibrium price process. Section 3
provides a necessary and sufficient condition for the existence of bubbles. The section
begins with the construction of a special type of bubble, which then serves as a limiting case
for the general case. The condition lends itself to basic policy analysis, which is performed
in Section 4 by discussing several policy measures, beginning with a welfare analysis.
Interpreting the trader’s payoff scheme as a compensation package that pays bonuses but
does not force traders to participate in losses allows us to evaluate the policy measures of a
cap on bonuses and long-term compensation. Section 5 concludes. Appendix A provides a
necessary and sufficient condition for the households’ participation constraint. All proofs
are in Appendix B.

2 The Model

2.1 Setup

Consider an infinite horizon economy with a series of cohorts of risk-neutral households
and traders. In period t, a continuum of measure N households and a continuum of

asset-price movements, leading to bubbles. Similarly, in Branch and Evans (2011), bubbles can arise
because of risk-averse agents who use least-squares learning. In Pástor and Veronesi (2006, 2009) there
is initial noisy information and learning over time as well, leading to stock-price behavior that can be
confused with a bubble.

8An exception is Caballero and Krishnamurthy (2006). In their model, however, the bubble growth
rate is again limited by the growth rate of the economy and is predictable in the case of a continuation.
As our model allows for multiple price paths, the growth rate of bubbles is unpredictable even conditional
on a continuation.
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measure N traders (bankers) are born. Each household has an initial endowment of D
dollars, and each trader owns E dollars. N is fixed over time but unknown. The perceived
probability of N has the distribution F (N); the density f(N) exists and has unbounded
support.9 Households and traders invest in period t, earn their returns, withdraw from
the market, and consume in the next period t+ 1, i. e., they both have a life span of two
periods. The duration of a period stands for the investment horizon of a trader.10

There are two types of assets, safe assets (short: storage) of unlimited supply and a single
risky asset (short: the asset) of volume 1. Storage assets bear a risk-free return of Y > 1
to a trader. The return of a safe asset to a household is λY , with 0 ≤ λ < 1. The
inverse of λ thus measures the investment advantage of traders, which may arise because
of better abilities or better information. Traders have access to the risky asset, which can
be interpreted as shares of a firm. Shares cannot be sold short. The firm pays dividends
of d in each period. There is a probability 1−q in each period that the firm goes bankrupt
and ceases to pay dividends forever; the firm’s shares are then no longer traded.11 Hence,
the time of bankruptcy follows a geometric distribution. The risky asset is traded in
a competitive market in each period, and its price follows an endogenous discrete-time
stochastic process {p̃t}t≥0.

In the following, we consider two alternative market structures that give rise to the same
dynamics and conclusions regarding the existence of bubbles. In the delegated-investment
setting, households can set up a contract with traders to benefit from their better access
to investment. Traders invest household funds and share the returns with the households
according to an agreed scheme. Their contract specifies the rate of return β the traders
need to generate to obtain a bonus at all, and the fraction α of the return above this hurdle
rate that will be paid out to the traders.12 Households can observe the return generated
by the traders, but not their investment choices. The bonus cannot become negative. The
traders’ target function is thus

max{α (R− β); 0}, (1)

where R is the trader’s gross return rate to investment. Traders maximize the expected
target function. The optimal values for the parameters α and β are derived in Appendix

9The unbounded support of the function implies that for a given amount of money which has already
been invested in the relevant market, the probability that not a single additional cent will be invested can
be very high, but not exactly 100%. The conditional probability of a further price increase is thus never
exactly zero. This assumption seems highly realistic.

10Traders enter and exit the market in an OLG fashion to generate trade each period. We do not see this
OLG structure as representing actual generations, but as a shortcut for non-modeled market imperfections
to generate trade, such as heterogeneous liquidity preferences of traders.

11One may also interpret the asset as real estate. If a house is used as rental property, d denotes the
rent per period, whereas 1 − q is the probability that the house becomes uninhabitable. Note that the
only necessary assumption for our mechanism to generate bubbles is uncertainty about market depth.
Introducing q < 1, however, allows us to evaluate the impact of fundamental riskiness of a given asset on
the possibility that this asset develops a bubble.

12As is well known in the literature, in many settings such contracts are optimal. For example, models
with costly state verification, moral hazard, or risk aversion on the part of households would lead to this
type of compensation scheme.
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A. For simplicity, we assume that traders do not invest own funds in the case of delegated
investment. This implies E = 0 in all derivations below.

In the setting of debt-financed investment, households can provide loans to traders for a
fixed interest rate, causing them to act as financial intermediaries who can invest D + E
rather than only E. Again, households cannot observe the investment choices of traders.
The endogenous gross loan rate, including principal, is called r > 1 and is also endogenized
in Appendix A. The income from a trader’s investment is then R (D+E), and the profit is
R (D+E)−rD if that is positive; otherwise, the profit is zero due to limited liability. The
trader’s target function is thus the same as in (1), with α := (D+E) and β := rD/(D+E).
Note that higher leverage D/(D+E) increases β, and limited liability becomes more severe
as traders are liable only with their own funds E. The constellation β = 0 corresponds
to the case without leveraged traders (D = 0), thus if households prefer not to lend to
traders. In this case, households become irrelevant and traders invest only their own funds.
As will be shown below, our results are also valid for this special case. In both settings, a
higher β leads to more risk taking by the traders. In case of debt-financed investment, β
is linked to leverage, while it represents how steep incentives are set for traders in case of
delegated investment. For simplicity, we will use the term ‘leverage’ in the following, with
the understanding that it refers to the steepness of incentives in the delegated-investment
setting.

We solve for stochastic rational expectations equilibria. We say that a bubble exists if
there are multiple stochastic processes satisfying the rational expectations equilibrium
condition. The model never predicts which price process is chosen. We now begin by
discussing the steady-state price path.

2.2 The Steady-State Price

Consider the following simple stochastic process {p̃t}t≥0. The price of the asset is a
constant, p̃t = p. The price drops to zero only if the underlying firm goes bankrupt (with
probability 1 − q), and cash ceases to flow. Hence, the price follows a simple binomial
process with Prt{p̃t+1 = p|pt = p} = q. Zero is an absorbing state. Let us derive the price
p for which this process is a rational-expectations equilibrium.

In a market equilibrium, prices must be such that the traders’ expected return is the same
for storage and for the risky asset. If a trader opts for storage, her payoff is max{α (Y −
β); 0} = α (Y − β) with β ≤ Y because otherwise, traders would not want to borrow. If
the trader buys shares of the firm at a price pt = p, she benefits from the dividend with
probability q. She thus earns d/pt with probability q. In the absence of a bankruptcy, the
price remains at p̃t+1 = p, and the trader additionally receives pt+1/pt = p/p = 1 from
selling the asset. This stochastic process is depicted in Figure 1.

In the steady state, a trader’s expected payoff from holding the risky asset at date t is

Etmax
{
0; α

( p̃t+1

pt
+
d

pt
− β

)}
= q α

(p+ d

p
− β

)
(2)
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Figure 1: The Price Process in Steady State.

Parameters are β = 0.9, q = 95%, d = 1, and Y = 1.1.

For the market to clear, traders must be indifferent between storage and the asset,

α (Y − β) = q α
(p+ d

p
− β

)
, (3)

⇒ p =
d q

Y − q − β (1− q)
. (4)

Therefore, the steady-state price p depends on the compensation scheme (β). The funda-
mental value equals the steady state price in the absence of leverage (β = 0, which implies
a proportional risk sharing between households and traders in the delegated-investment
setting),

p :=
∞∑
t=1

pt d

Y t
=

d q

Y − q
. (5)

Hence, only if β = 0 (no leverage) or if q = 1 (no risk), the fundamental value and steady-
state price are equal, p = p. The effect of leveraged traders pushing prices of risky assets
above their fundamental levels has been analyzed previously by Allen and Gale (2000), but
this systematic deviation from fundamentals is not driven by expectations. The following
comparative statics follow immediately.

Proposition 1 The ratio between the steady-state price p and the fundamental value p is
high for a low yield Y on safe assets, for high fundamental risk (low q), and for substantial
leverage/steep incentives (high β).

A large ratio p/p amplifies the effect of a change in fundamentals on the steady-state
price. Let us clarify three aspects. First, the price p can only be achieved if the market
is deep enough, i. e., if enough money is in the market, N (D + E) ≥ p. Otherwise, there
is cash-in-the-market pricing, and p = N (D + E). Second, households may not wish to
invest through traders at all. If the households invest themselves, they receive λY D from
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the safe asset. If the households invests through a trader, the trader invests in the risky
asset with probability p

N (D+E) because this fraction of overall investment is taken by the
risky asset. In this case, a part of the investment is lost with probability q. Consequently,
if the asset is too risky, and/or the trader’s return rate is only slightly above that of the
households, traders receive no outside financing. We derive the households’ participation
constraint in Appendix A.

Third, in the numerical example for Figure 1, the fundamental value is p = 6.33, but the
steady-state price is p = 9.05. This price deviation is due to leverage/steep incentives.
However, the deviation is static and driven by fundamentals (risk q, dividends d, and
investment opportunity Y ) and the traders’ financial contracts (β) but not by traders’
expectations about future price developments. The deviation is constant over time and
cannot burst, so its existence is less interesting from a financial stability perspective.
Nevertheless, this deviation can magnify price movements resulting from, e. g., changing
dividend payments. In contrast, the bubble described in the following section is dynamic
by nature and can only be sustained if the price is expected to further increase in the
future. Large price deviations are fueled by the expectation that future traders will buy
at an even higher price. A bubble grows dynamically, and it can burst at any time.

3 Bubbles

Consider a situation in which the price pt is above the steady-state price p at a certain
date t. The only conceivable reason to buy is that traders expect the price to rise even
further, at least with some probability. Otherwise, traders would prefer to store rather
than to invest in the asset. We define this expectations-driven price deviation as a bubble.

Definition 1 (Bubble) A bubble is a price process in a rational-expectations equilibrium
in which the price deviates from the steady-state price.

In the model, because the steady-state price process always exists, the existence of a
bubble is equivalent to the existence of multiple equilibria. Hence, the search for bubbles
is equivalent to the search for multiple equilibria. We now state our main result before
turning to an example in section 3.1.

Theorem 1a Define

γ := lim
N→∞

N
f(N)

1− F (N)
(6)

if the term converges in IR+ ∪ {∞}. If β ≤ (γ − 1)/γ, bubbles cannot exist in a rational
expectations equilibrium. If β > (γ − 1)/γ, bubbles are possible if and only if

γγ
( β

γ − 1

)γ−1 ≤ q

Y − β
. (7)

If γ < 1, bubbles are always possible. In the limiting case γ = ∞, bubbles never exist.
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If the term in (6) does not converge, we can derive a more general version of Theorem 1a.
Instead of the limit, we take the supremum and infimum of the term (6), which always
exists in IR+ ∪ {∞}. The supremum enters into a sufficient condition for the existence
of bubbles, and the infimum enters into a necessary condition. However, for common
distribution functions, the limit does exist; the distinction between supremum and infimum
is then unnecessary.

Theorem 1b If the limit in equation (6) does not exist, define

γ := inf
N→∞

N
f(N)

1− F (N)
, and γ := sup

N→∞
N

f(N)

1− F (N)
, (8)

with 0 ≤ γ < γ ≤ ∞. If β ≥ (γ − 1)/γ and

γγ
( β

γ − 1

)γ−1
<

q

Y − β
, (9)

bubbles are possible; the price process has multiple rational expectations equilibria. If β <
(γ − 1)/γ or

γγ
( β

γ − 1

)γ−1
>

q

Y − β
, (10)

bubbles are impossible; the price process is unique. If γ < 1, bubbles are always possible.
In the limiting case γ = ∞, bubbles never exist.

Before deriving Theorems 1a and 1b in detail, let us provide a brief explanation. In the first
part of the theorem, we analyze the tail behavior of the distribution of N by calculating γ.
The definition of γ is the limit of a relative version of a hazard rate, which is intuitive as
we are interested in the probability of a bursting bubble given a price increase in per cent.
Condition (7) verifies whether the tail of the distribution is thick enough to constrain the
risk of a burst such that investing is still attractive (a low γ denotes a thicker tail). A
higher β denotes higher leverage of the traders, which makes it more attractive to assume
risk. In case of a very thick tail (γ < 1), traders are willing to invest their own funds into
a publicly known bubble even without limited liability (β = 0). In this case the presence
of financial intermediation is irrelevant. A high return Y of the risk-free asset and a high
intrinsic risk of the risky asset (low q) reduce traders’ willingness to invest in the risky
asset.

For γ < 1, we get the result of Blanchard (1979) and Blanchard and Watson (1982):
bubbles are always possible. For γ → ∞, we obtain Tirole (1982)’s impossibility result.
The following proposition and Table 3 (middle column) summarize the comparative statics.
An upward arrow signifies that the necessary condition for a bubble to emerge is fulfilled
for a larger range of all other parameters. Figure 2 visualizes the parameter constellations
that allow for bubbles. In the figure, bubbles exist for parameter constellations below the
plane. The range of β starts at (γ − 1)/γ as bubbles cannot exist below.
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Static deviation Bubble condition HH participation
(Prop. 1) (Prop. 2) (Prop. 8, App. A)

γ — ↘ ↘
Y ↘ ↘ ↘
β ↗ ↗ ↗
q ↘ ↗ ↗
d —

(but multiplier)
— —

Table 1: Effects of Variations of Parameters

An upward arrow in the left column indicates that the deviation increases. An upward arrow in the middle
and the right columns signifies that the necessary condition for a bubble to emerge is fulfilled for a larger
range of all other parameters.

Figure 2: Parameter Range where Bubbles are Possible

Here, γ = 2. For parameter constellations below the surface, bubbles are possible.

Proposition 2 Bubbles tend to be possible for a low risk-free yield Y , low fundamental risk
(large q), large uncertainty about market depth (low γ), and high leverage/steep incentives
(high β).

In Appendix A, we prove a second pair of theorems with the same structure. Whereas
Theorems 1a and 1b address the incentives of traders to invest in the potentially bubbly
asset, Theorems 2a and 2b will address households’ incentives to invest trough a trader. If
the parameter γ exists, we can derive a sufficient and necessary condition. If the parameter
does not exist, we will again use the supremum for a sufficient condition and the infimum
for a necessary condition. To summarize the results, parameter constellations that tend to
make bubbles possible (see Proposition 2) also make household’s participation constraint
less restrictive (see the right column of Table 3, or Proposition 8 on page 30).
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Again, note the difference between a dynamic price deviation from the steady-state price
and the static deviation of the steady-state price from the fundamental value. There is
one major difference between these two cases in the left and the middle column. A static
deviation is larger for inherently risky assets, but bubbles tend to emerge for inherently safe
assets. Note one subtle but important difference between the inherent and the financial
risks of an asset. To provide an example, building a house may be inherently safer than
buying stock in a firm. However, considering financial risk, a house may be a riskier
investment, especially if it is built during a bubble. Our model distinguishes between these
notions of risk. Inherent risk is captured by 1−q, the risk of failure of the underlying asset.
Additional financial risk can occur if movements in fundamentals are strongly magnified
because the asset price deviates from the fundamental value in a static way or because
condition (7) holds, and a bubble can form. Interestingly, the two sources of financial
risk react similarly to most parameter changes, but their reactions with respect to the
underlying risk 1− q are directly opposed.

This fine differentiation suggests different explanations for the two most prominent bubbles
in recent decades. Real estate and mortgages are inherently safe; thus, according to
Lemma 1, a speculative bubble on these assets should be feasible. In this sense, the
theory matches the recent real estate bubble.13 However, dot-com firms are inherently
risky. A speculative bubble might be thus impossible, but the above static deviation
that potentially changes fundamentals will be particularly large. Consequently, according
to our theory, the bursting of the dot-com “bubble” might have been a correction of
expectations bloated by a large multiplier.14

The proof of Theorem 1a and 1b proceeds in three steps. We first concentrate on simple
(trinomial) bubble paths and a subset of distributions F (N). The ensuing lemma serves
both to illustrate the mechanics of a bubble and as a stepping stone for the general
case. Section 3.2 then drops the assumption of a trinomial price path, yielding another
lemma, and Section 3.3 drops the assumption of the distribution of N , yielding the above
Theorem 1a and 1b. The intuition for the proofs is in the main text, and the formalism is
in Appendix B.

3.1 “Trinomial” Bubbles

First, concentrate on a trinomial process with

p̃t+1 =

⎧⎨
⎩

0, with probability 1− q
p, with probability q −Qt

pt+1, with probability Qt

(11)

13As argued in footnote 5, the development of the housing bubble was also promoted by the constellation
of the remaining parameters, i. e., low interest rates, opaque financial markets, and the 2004 decision of
the Securities and Exchange Commission to allow the large investment banks to assume more debt, which
corresponds to a higher β (see Section 4.5).

14Pástor and Veronesi (2009) model the learning process about the productivity of new technologies and
apply it to the introduction of railroad and internet technologies. The mentioned multiplier is then an
amplification of movements generated by learning.
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with Qt ≤ q.15 All variables {pt, Qt}t are determined endogenously. For our purposes,
trinomial processes are the simplest ones, allowing for a fundamental default of the firm
(case one), a bursting of the bubble (case two), and the continuation of the bubble (case
three).

Second, let us concentrate on a parameterized version of the number of households and
traders F (N). To be concrete, we assume that logN is exponentially distributed; thus,
F (N) = 1−eγ (logN−logN0) = 1−(N/N0)

−γ for some N0 > 0 and γ > 1. Here, N0 is a lower
bound on the number of households, and γ measures the thinness of the tail. Because the
number of traders is also N , and they can invest additional funds from households, the
aggregate amount of investment L is (D+E)N . L is the maximum amount of investment
in the asset, i. e., the market depth. This value has the distribution function

F̄ (L) = Pr{(D + E)N ≤ L} = F
(
L/(D + E)

)
= 1−

( L

(D + E)N0

)−γ
= 1−

( L
L0

)−γ
. (12)

with L0 := (D+E)N0. γ measures the precision of the information on market depth; for
γ → ∞, the market depth is L = L0 with certainty. Because each intermediary can invest
D + E dollars, an asset’s price p can never exceed L = N (D + E).

Construction of a Bubble. Next, we proceed to the discussion of bubble paths. A
possible price process is depicted in Figure 3. The process begins at a certain price p0 > p;
the resulting bubble can then grow further and further, p0 < p1 < p2 < . . . For a given
price increase from pt to pt+1, more money will be absorbed by the market in t+ 1 than
in t. As a consequence, pt+1 may exceed the market depth L at a certain date. In this
case, the price reaches a ceiling, and no further price increases are possible, i. e., traders
cannot expect to sell the asset at a higher price in the future. Hence, the bubble must
collapse back to the steady-state price, p̃t+1 = p. This ceiling L is not pictured in the
figure as it is unknown. The date at which the bubble bursts is (and must be) unknown,
but with certainty, the ceiling will be reached at some date. Initially, the amount of money
absorbed by the risky asset is relatively small. However, as the bubble grows, more traders
are attracted by the risky asset, and it absorbs more money. This money is diverted from
investment into the safe asset (storage).

Alternatively, if the underlying firm goes bankrupt, the price drops to p̃t+1 = 0. The
conditional probability of a continuation (non-collapse) of the bubble is then

Qt = q Pr{pt+1 ≤ L|pt ≤ L} = q
1− F̄ (pt+1)

1− F̄ (pt)

= q
Lγ
0/p

γ
t+1

Lγ
0/p

γ
t

= q pγt /p
γ
t+1, (13)

15Note the notational difference between p̃t+1 and pt+1. p̃t+1 is the stochastic price at date t + 1 that
can assume three different values. pt+1 > pt is the largest of these realizations.
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Figure 3: A Trinomial Price Process with a Bubble

As in Figure 1, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and Y = 1.1.

where q is the probability that a firm continues to operate, and Qt is the probability that
the firm’s asset price continues to rise. The probability that the bubble bursts although
the firm is still solvent is thus 1−Qt − (1− q) = q −Qt = q (1− pγt /p

γ
t+1).

Because no dividends are paid, and the shares are no longer traded if the firm is insolvent,
the profit of the trader is α max {0/pt + 0/pt − β; 0} = 0 in this case. Alternatively, if
the share price falls because a bubble bursts, the price drops to p. For now, let us simply
assume that there is no profit if a bubble bursts. We provide a condition and analyze
the alternative in the proof of Lemma 1 in Appendix B. The asset market can only be in
equilibrium if a modified version of (3) holds, considering the probability of a burst and
the increased profit if the bubble does not burst:

α (Y − β) = Qt α
(pt+1 + d

pt
− β

)
,

= q
( pt
pt+1

)γ
α
(pt+1 + d

pt
− β

)
,

⇒ Y − β

q
=
( pt
pt+1

)γ (pt+1

pt
+
d

pt
− β

)
. (14)

Equation (14) implicitly determines a price process in a rational expectations equilibrium.
For any given p0 > p, (14) implicitly defines p1, and (13) provides the corresponding Q0;
thus, all variables for p̃1 in (11) are defined. Then, if we begin from p1 in a second step,
(14) and (13) define p2 and Q1; thus, p̃2 is obtained. Following this procedure provides
the complete process recursively. One such process is shown in Figure 3.

The Existence of Bubble Processes. Equation (14) does not necessarily yield a
solution for any set of parameters. As discussed above, the higher the potential future
price increase, the more likely it is that the market depth L is reached and the bubble
bursts. However, the more likely the bubble is to burst, the larger the expected price
increase must be to compensate traders for the risk they face. This multiplier effect does
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not necessarily reach an equilibrium price pt+1 for all pt. In this case, there is a p̂ above
which potential future price increases cannot compensate for the accompanying higher
risk of a burst. Because all market participants can calculate the date t at which this p̂ is
reached, if it exists, a bubble will burst with certainty at a certain date t+1, i. e., Qt = 0.
If the bubble cannot be sustained at a date of t+1, traders anticipate this. By backward
induction, the bubble is not sustainable from the beginning.

We are interested in conditions under which a bubble can or cannot be sustained. To be
sustainable, the implicit equation (14) must have a solution at any date t, or equivalently,
for any initial price pt. Rewriting (14) by defining the auxiliary variable φt = pt+1/pt as
the relative price increase yields

Y − β = q φ−γ
t

(
φt +

d

pt
− β

)
. (15)

The left side of the equation is independent of pt, but the right side depends on the starting
point pt.

Figure 4 shows the left side (thin solid line) and the right side for two starting prices,
pt = p (thick dashed curve) and lim pt → ∞ (thick solid curve). If the curve intersects
with the line, a bubble is possible. For γ < 1, they always intersect, for γ → ∞, they
never intersect. Consider first the case pt = p. The intersection with the thin line is at
φt = 1, which implies that pt+1 = φt pt = pt, so there is no price increase. Starting with
pt = p, we are in the steady state; the price does not change over time.

If the initial price is slightly above p due to higher expectations, the curve shifts downwards
(and slightly changes its shape), implying that it intersects with the line at a certain
φt > 1. In the next period, the price will be higher still, so the intersection φt+1 will be
even higher. A bubble emerges, and the growth rate φt = pt+1/pt increases with time. For
lim pt → ∞, the limiting line q (φ − β) is reached (solid curve). Because the intersection
point moves right as pt increases, the bubble becomes less stable; the probability of a
burst, 1−Qt = 1− q/φt, increases.

When the asset price increases and the curve moves downward, an intersection between
the line and the curve can cease to exist (if γ > 1), depending on the parameters. In this
case, it is common knowledge that the asset price cannot rise without bounds. Because
of this upper bound, a backward induction argument applies. No rational price deviation
can exist in the first place.

Condition for Existence. To show that a bubble can be sustained in a market, it is
sufficient to consider large prices pt. In the limit of pt → ∞, (15) simplifies to

Y − β = q φ−γ (φ− β). (16)

The equation does not depend on time; thus, we have dropped the index t. If (16) has a
solution for φ > 1, the corresponding market can sustain a bubble.16 This formula implies

16There are at most two solutions to (16). In the following explanation, we concentrate on the lower
solution. As we are mainly interested in the existence of bubbles, the magnitude of the solution is irrelevant.
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Figure 4: Possibility of a Bubble: Expected Returns

As in Figure 3, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and Y = 1.1.

that for arbitrarily high prices pt, there is always a price pt+1 that is high enough to induce
traders to buy at date t. If (16) does not have a solution for φ, then there exists a price
p̂ beyond which no further increase is impossible. Nobody buys, and the bubble bursts.
Hence, according to backward induction, the bubble cannot begin to form at date t = 0.
The only possible price is then p0 = p.

Although one cannot provide a closed-form solution of (16), one can provide a necessary
and sufficient condition for existence, which leads to the following lemma.

Lemma 1 If logN is exponentially distributed, and β > (γ − 1)/γ, a price process can
exhibit a trinomial bubble in a rational expectations equilibrium if and only if (7) holds,
hence if

γγ
( β

γ − 1

)γ−1 ≤ q

Y − β
. (17)

If γ < 1, it can always exhibit a trinomial bubble. If β ≤ (γ − 1)/γ or γ = ∞, trinomial
bubbles cannot exist.

As for the steady-state price above, we discuss the participation constraint of the house-
holds in Appendix A. In sum, households’ relative return to investing λ must be low
enough to maintain intermediated investment attractive for them despite the risk of a
bursting bubble.

Moreover, as households become less willing to invest money with increasing φ, they might be willing
to invest in the lower solution (see Appendix A) but not the higher solution. Combinations of the two
equilibria are implicitly addressed in Lemma 2. Note also that the higher solution is unstable. Furthermore,
a solution must satisfy φ ≥ 1. Values of φ < 1 would stand for bubbles with falling prices and, formally,
negative probabilities of a burst. A sufficient condition is β ≥ (1− γ)/γ; see the proof of Lemma 1.
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Recall that higher risk of a bursting bubble implies a larger potential price increase to
compensate traders and that a larger potential price increase in turn increases the likeli-
hood of bursting. If this problem has a fixed point at all times, a bubble can emerge. If
risk-free rates are higher, storage becomes more attractive to traders, and the traders must
be compensated by a larger potential price increase of the risky asset to hold it. However,
this process further increases the likelihood of a burst, which impedes the convergence to
a new fixed point. Hence, for a larger risk-free yield Y , bubbles might cease to be possi-
ble. This finding is consistent with the idea that central banks can puncture bubbles by
increasing interest rates and that bubbles are particularly likely if interest rates are low.
We discuss the potential of monetary policy to prevent bubbles in more detail in Section
4.3. Furthermore, bubbles can exist particularly if q is high, that is, if the underlying
asset is rather safe, which decreases the likelihood of a burst. The parameter γ captures
the uncertainty in the market. The smaller the value of γ, the larger are the mean and
the variance of the distribution, and the more uncertain is the potential market size. The
parameter N0 does not appear in the analysis, which shows that for the existence of a
bubble, only the shape of the upper tail matters; bubbles tend to exist for smaller values
of γ. For γ < 1, the expected market size becomes infinite. Bubbles can then always exist.
On the other hand, if γ → ∞, the market depth is almost surely L0, and a bubble can
never be sustained independent of the values of other parameters. Finally, the parameter
β describes the degree of leverage in the debt-financed investment setting and thus the
importance of limited liability. The larger the value of β, the more traders rely on exter-
nal financing, and the more prominent the effect of limited liability becomes. Hence, we
obtain the result that the emergence of bubbles may become possible in the context of a
high degree of leverage. In the delegated-investment setting, β is interpreted as the hurdle
rate of the bonus contract. Its effect on traders’ incentives is the same as for leverage in
case of debt-financed investment: a higher value implies that the trader needs to generate
a higher return in order to obtain any payment at all. The emergence of bubbles may
hence become possible if traders’ incentives are steep.

3.2 General Bubble Price Path

We have argued that a special type of bubble process, the trinomial bubble, exists if and
only if (7) holds. We now generalize this result by showing that if (7) fails to hold, the only
rational expectations equilibrium process is the non-bubble process with the steady-state
price p. Then, no conceivable bubble paths exist. We provide an intuitive explanation
here; the proof is in Appendix B. Trinomial bubbles do not exist if the thick curve and
the thin straight line in Figure 4 do not intersect, i. e., if there is no solution for φ, and
hence prices in a bubble eventually increase too quickly to be sustainable. The point on
the graph at which the line and the curve are closest corresponds to the price increase
with the lowest ratio of risk (of a bubble burst related to φγ) to potential gains (of a price
increase related to φ). Concentrating all probability mass on this point maximizes the
attractiveness of an investment in the risky asset, thereby creating favorable conditions
for the emergence of bubbles. Distributing probability mass to other price increases, i. e.,
deviating from the assumption of a trinomial price process, lowers the willingness of traders
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to invest in the risky asset and therefore reduces the parameter space in which bubbles
are possible. Thus, for a given set of parameters, if not even a trinomial bubble path
exists, no bubble can exist at all. However, if a bubble does exist, its path depends on the
evolution of price expectations; it cannot be unique.

Lemma 2 If logN is exponentially distributed, and β > (γ − 1)/γ, a price process can
exhibit a bubble in a rational expectations equilibrium iff (7) holds, hence if

γγ
( β

γ − 1

)γ−1 ≤ q

Y − β
.

If γ < 1, it can always exhibit a bubble. If β ≤ (γ − 1)/γ or γ = ∞, bubbles cannot exist.

3.3 General Distribution of Market Depth

Thus far, we have assumed that logN and therefore also logL are exponentially dis-
tributed. We now derive a bubble condition for general distributions of the market depth
L. However, the bubble condition (7) used the distribution-specific parameter γ. For gen-
eral distributions, we must find the property that is captured by γ. In fact, γ describes the
fatness of the distribution’s tail, thereby measuring the uncertainty regarding the market
depth. For example, if logN is exponentially distributed, the hazard rate is

f(N)

1− F (N)
=

γ

N
. (18)

A relative version of the hazard rate, d
dφF (φN)

∣∣
φ=1

/(
1 − F (φN)

)∣∣
φ=1

= N f(N)
1−F (N) , is

constant and equals γ for the example distribution. Hence, the possibility of a bubble will
depend on the relative hazard rate of F (N) for large N . Following this approach yields
Theorem 1a in which this relative hazard rate is provided by the parameter γ. However,
the parameter need not converge, and if it does not, one must use the supremum and the
infimum instead. This yields Theorem 1b.

Let us provide some intuition. We already know that the possibility of a bubble depends on
the shape of the distribution f(L) for large L, thus for large prices. The relevant measure
for the thickness of the tail is the relative hazard rate as it denotes the probability that
today’s price realization plus one percent is still below N (which is the applicable question
for calculating returns). Therefore, for a general distribution of N , we must calculate the
relative hazard rate in the upper tail of the distribution. This rate need not converge, but
the supremum (infimum) provides an upper (lower) limit, hence a lower (upper) boundary
for the thickness of the tail. Theorem 1b states that if a bubble were possible already for
a constant relative hazard rate at γ, then bubbles are even more possible for even thicker
tails; we obtain a sufficient condition. If the tail is thinner as described by γ, we know
from Theorem 1b that bubbles are not possible, resulting in a necessary condition.
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4 Policy Measures

In this section, we first show that bubbles reduce welfare in our setting. We then interpret
α and β as parts of a compensation package and can therefore discuss caps on bonuses
and mandatory long-term compensation as possible policy measures. We go on examining
whether certain other policy measures that have been suggested in public debates can
prevent the creation of bubbles. Specifically, we examine an asset-price augmented Taylor
rule, a financial transaction (Tobin) tax, and capital requirements.

4.1 Welfare

To justify any policy measure for the prevention of bubbles, the welfare effect of bubbles
must be analyzed.17 In our model, agents consume in their second period. To aggregate
the utilities of different cohorts of traders and households, we introduce a discount factor
ρ < 1, which is also the discount factor between cohorts. Then

E0[W ] =
∞∑
t=0

ρtE0[Ct], (19)

where Ct is the aggregate expected consumption at date t. Payments between traders and
households in the same cohort are mere transfers and do not directly enter the welfare
function. In the absence of a bubble, the price of the asset is p until the asset defaults.
Hence, the cohort that consumes on date 0 earns C0 = p from selling the asset. Cohort 1
pays p for the asset. Because there are N households and N traders owning D and E
dollars, respectively, the aggregate endowment of cohort 1 is N (D+E). A part p is spent
on the risky asset, so the investment in the risk-free asset is N (D + E) − p with a gross
yield of Y . With probability q, cohort 1 also obtains p from selling the asset plus the
dividend d. Hence, the aggregate expected consumption of cohort 1 is

E0[C1] = q (d+ p) +
(
N (D + E)− p

)
Y. (20)

Cohort 2 buys the asset only with probability q; with probability 1−q, the firm is bankrupt
and there is nothing to buy. Hence,

E0[C2] = q2 (d+ p) +
(
N (D + E)− q p

)
Y. (21)

The equations for the following cohorts are similar. Discounting, aggregating over cohorts,
and taking the derivative with respect to p yields

d

dp

(
E0[C0] +

∞∑
t=1

ρtE0[Ct]
)
= −ρ Y − 1

1− ρ q
. (22)

17We restrict the analysis to the case of γ ≥ 1. Otherwise, bubbles cannot be prevented by economic
policy.
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This derivative is negative if ρ Y > 1. A high price p causes consumption to be shifted
from the future to the present, increasing welfare due to less discounting. However, a high
p also leaves less for real investment in the Y -technology. As a result, if Y > 1/ρ, a lower
market price p increases welfare.

The condition Y > 1/ρ indicates that risk-free investment increases welfare initially; oth-
erwise, no investment would occur at all and no bubble could emerge. For the rest of the
paper, we assume Y > 1/ρ. A social planner would then set the price of the risky asset
to zero if she could. However, this solution is not feasible in a decentralized equilibrium.
Consequently, the welfare-optimal price path is the one with the smallest possible prices
– the steady state.

Proposition 3 Welfare in a bubble is smaller than in the steady state.

Note the difference from models of rational bubbles in overlapping-generations models,
which build upon the mechanism developed in Tirole (1985). In these models, bubbles
are possible if the economy features a certain form of dynamic inefficiency. Investing less
in capital increases available resources currently and in the future such that bubbles can
be purchased by future generations and increase welfare. Our model does not require
dynamic inefficiency for bubbles to exist. Furthermore, because we assume that the Y -
technology exhibits constant returns, investment is always welfare enhancing as long as
ρ Y > 1. Investment reduces welfare if this condition does not hold, but then bubbles are
not possible.

The analysis of aggregate welfare conceals the fact that interests can be different from
an ex-interim perspective. The first cohort always profits from the existence of a bubble.
From an ex-ante perspective, the second cohort suffers in expectations. However, once
a cohort has purchased the overpriced asset, that cohort no longer wants the bubble to
burst. Hence, although a welfare-maximizing regulator should avoid bubbles, her interests
might be different if she is influenced mostly by the current cohort.

4.2 Policy Measures for Intermediated Investment

In this section, we evaluate two frequently proposed policy measures: caps on bonuses and
long-term compensation. For this purpose, we interpret payoff scheme (1) as a contract
in an delegated-investment setup (as already discussed in Section 2).

Caps on Bonuses. After the financial crisis, the desirable amount of bonus payments
has been heavily debated. In this context, we wish to analyze whether bubbles can be
prevented by changing traders’ incentives. The bonus payment to a trader is Bt = α

(
φt+

d/pt−β
)
if the underlying asset continues to pay off (probability q) and if the bubble does

not burst (probability 1−Q). If a bubble is absent, this bonus payment is a constant. Let
us first ask whether a potential cap on this bonus would bind early or late in the life of
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a bubble. In terms of the bonus payment, φt increases over time, but d/pt decreases. In
sum, due to (15), we have

Bt = α
(
φt + d/pt − β

)
= αφγt (Y − β)/q.

Hence, bonuses increase over time in a bubble, and caps on bonus payments become
binding in later stages of a bubble. As a consequence, we can concentrate on large prices
pt so that φt approaches a constant and the maximum bonus is

B = α
(
φ− β

)
= αφγ (Y − β)/q.

Now, assume that the regulator places restrictions on the bonus. There are several ways
in which the regulation can be implemented. First, the compensation scheme could be
adjusted such that bonuses are uniformly lower, which is equivalent to increasing β. How-
ever, according to Theorem 1a an increase in β would even favor the emergence of bubbles.
Hence, this policy would backfire. Second, one could proportionally reduce bonuses by
decreasing α. Because α does not appear in the condition in Theorem 1a, this policy
measure has no effect on bubbles at all.

Third, one could place a cap B̄ on bonuses. The compensation scheme accordingly adjusts
to min{max{α ((pt+1 + d)/pt − β

)
; 0}; B̄}. The bubble then bursts with certainty at a

specific point if α
(
φ − β

)
> B̄ and thus if φ > B̄/α + β. Economically, from a certain

point on, traders’ bonuses cannot rise further to compensate them for the continually
increasing risk of a bursting bubble. A backward induction argument then shows that
the bubble cannot exist in the first place. Consequently, for a given compensation scheme
with parameters α and β, a cap on bonus payments B̄ renders a bubble unfeasible if
B̄/α+ β < φ, with φ implicitly defined by (16).

Proposition 4 To prohibit the emergence of a bubble by decreasing bonuses, raising β is
counterproductive, reducing α is irrelevant, and placing a cap B̄ on bonuses is effective if
and only if this cap is low enough.

The model can indicate which types of assets might require a cap on bonus payments
and for which assets the cap must be lower. First, relatively safe assets (high q) tend to
develop bubbles, and the price increase φ is especially low for safe assets, which implies
that traders in markets with relatively safe assets (e. g., mortgages, bond markets) should
have a ceiling in their bonus contracts that should be relatively low. Second, bubbles
emerge especially for high hurdle rates β, and the limit price increase φ is lower for large
β. Because B̄ < α (φ− β), the minimal effective cap B̄ depends negatively on β. With a
higher benchmark, the cap must be stricter.

Long-term Compensation. In recent political discussions, it has been argued that
traders’ incentives should concentrate more on long-term goals and should avoid short-
termism. The same argument might apply to the traders in our model. To analyze this
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question, let us assume that the trader receives max{0; α (R− β)} as before but that she
is liable with her compensation for potential future losses. Hence, she receives nothing if
the accumulated yield is negative next period. In a steady state, the market price is

α (Y − β) = q2 α
(
(pt + d)/pt − β

)
,

pt = p :=
d q2

(1− β) (1 − q2) + Y − 1
, (23)

i. e., smaller than without long-term liability. If a bubble exists, the probability that the
bubble does not burst after two periods is

Q = q2 pγt /p
γ
t+2 = q2/φ2 γ .

As a consequence, the one-period price increase φ is determined by

α (Y − β) = Qα
(
φ− β

)
= q2/φ2 γ α

(
φ− β

)
,

φ2 γ (Y − β) = q2
(
φ− β

)
.

The equation is similar to (16), but γ is replaced by 2 γ, and q is substituted by q2. Because
bubbles exist especially for small γ and large q, according to Proposition 2, we find that
long-term liability prevents the formation of bubbles. For a longer liability period, the
effect would be even larger. This argument concentrates on trinomial bubbles but can be
generalized to bubbles in general.

Proposition 5 If traders are liable for future developments with their bonuses, the range
of parameters in which bubbles are possible is reduced.

This measure includes a side effect. Replacing q by q2 in equation (4) shows that the
steady-state price in (23) rises, which is also visible in Table 3. As this condition implies
that the risky asset’s overvaluation increases, and less resources are devoted to the risk-
free asset, welfare is reduced in the steady state. Intuitively, the long-term compensation
magnifies the negative effects of limited liability. The occurrence of bubbles depends on
expectations for which probabilities cannot be calculated. Thus, we cannot determine
whether the overall welfare effect of preventing bubbles and simultaneously raising the
steady-state price is positive or negative.

4.3 Monetary Policy

We assume that by setting interest rates, the central bank has at least an indirect impact
on the return to safe assets over short time horizons. As discussed above, higher returns
to safe assets can puncture a bubble. Hence, discretionary monetary policy can prevent
bubbles.18 Assuming a Taylor rule that considers asset-price inflation, we can also analyze

18Conlon (2015) also finds that welfare can be increased by central-bank actions. His argument, however,
is very different from the present model. In his setup, bubbles burst because the central bank reveals
information to asymmetrically informed traders.
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Figure 5: Effects of the Taylor Rule

the impact of an automatic, pre-announced interest-rate increase in the case of a bubble.
Specifically, assume a version of the rule used in Bernanke and Gertler (1999, 2001),

it = ī+ ψπ (πt − π̄) + ψ (pt/pt−1 − π̄), (24)

where it is the nominal interest rate, πt is the gross consumer price index (CPI) inflation,
and pt/pt−1 is the asset-price inflation of the only risky asset in the economy as defined
above. For simplicity, we neglect the influence of asset-price inflation on CPI inflation by
setting CPI inflation equal to its target rate π̄, which is itself set to unity.19 Hence, in
steady state the nominal interest rate ī equals the real rate, which is given by the return Ȳ
of the safe asset. This assumption does not influence our conclusions below. For simplicity,
we furthermore assume that returns from storage depend on the interest rate in a linear
way, Yt = ι it with ι > 0. As in the above analysis, in a bubble, pt+1/pt converges towards
a constant φ. Inserting (24) into (16) yields

ι
(
Ȳ + ψ (φ− 1)

) − β = q φ−γ (φ− β). (25)

As for (7), we can derive a condition for parameters Ȳ , ψ, β, γ and q to determine whether
(25) has a solution for φ > 1. Intuitively, a positive ψ transforms the flat line Y − β of
Figure 3 into an upward sloping line; see the left side of equation (25). As shown in the
figure, for a sufficiently steep slope, the intercept disappears, implying that the risky asset
becomes too unattractive for investments.

Figure 5 shows the values of ψ dependent on ī for which bubbles can exist, fixing γ = 2,
β = 0.9, ι = 1, and r = 10%. The figure shows that to prevent the emergence of bubbles,
the central bank can threaten to raise interest rates in the future if a bubble should

19Hence, it corresponds to the real interest rate. As said, we thus assume that the central bank has at
least a certain impact on short-term real rates, which is standard in monetary economic theory. If inflation
reacts negatively to interest rates, the value of ψ must be correspondingly higher to prevent bubbles. If
asset-price inflation positively affects CPI inflation, ψ can be set to a lower value to prevent bubbles.
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occur by committing to a Taylor rule with a positive ψ. For lower ī, a higher ψ must be
implemented. In equilibrium, the central bank never actually needs to raise interest rates:
interest rate increases occur only as a consequence of asset-price movements, but because
of the credible announcement of this policy (with a sufficiently large ψ), asset prices do
not rise, and bubbles are prevented.20

Proposition 6 Monetary policy that systematically reacts to asset-price increases (ψ > 0)
reduces the range of parameters in which bubbles are possible.

This argument shows that compared with discretionary interest-rate policies, a Taylor-
type rule could cause fewer distortions. However, if the central bank cannot differentiate
between price movements due to bubbles and changes in the underlying fundamentals
(such as the probability of bankruptcy, 1− q), or if the bank is uncertain of which assets
to monitor, it faces a tradeoff between preventing bubbles and the risk of unnecessarily
changing the interest rate in periods without bubbles. A thorough examination of this
trade-off would require a fully specified dynamic stochastic general equilibrium model,
which is beyond the scope of this paper.

4.4 Financial Transaction Tax

There are several possible ways to implement a so-called Tobin tax. In the following, we
assume that the tax must be paid by the buyer of an asset. We call τ the tax rate on
transactions of the safe asset and τ ′ the (potentially different) tax rate on the risky asset.
Under such a tax regime, the market-clearing condition (16) changes to

Y − β − τ = q φ−γ (φ− β − τ ′). (26)

The modified condition for the existence of bubbles is then

γγ
(β + τ ′

γ − 1

)γ−1 ≤ q

Y − β − τ
, (27)

with the additional restriction that β + τ ′ ≥ (γ − 1)/γ. The derivative of the left side of
inequality (27) with respect to τ ′ is positive, i. e., increasing the tax on transactions of the
risky asset tends to make bubbles impossible. The latter inequality, however, goes in the
opposite direction. Hence, a situation could emerge in which small increases in τ ′ make
bubbles possible, while further increases prevent them. Additionally, the way in which the
tax is implemented is crucial. If the tax is levied on all financial assets, including the safe
one, τ equals τ ′, and the derivative of the right side of (27) with respect to the common
tax rate is larger than the derivative of the left side. Hence, in such a case, the possibility
of bubbles can actually be created by the Tobin tax. Furthermore, modifying equation (3)

20In this respect, the model differs from that of Bernanke and Gertler (1999, 2001), who show that
monetary policy should not react to asset prices based on the assumption of exogenous bubbles.
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similarly to equation (26) shows that increasing τ raises the steady-state price, whereas a
higher τ ′ reduces it. For identical τ = τ ′, a higher tax rate also increases the steady-state
price. Hence, the impact of bubble-eliminating measures are reinforced. The revenues
from the Tobin tax are welfare neutral if they are redistributed to the households.

Proposition 7 If a financial transaction tax is levied on the risky asset only, the range
of parameters in which bubbles are possible is reduced.

4.5 Capital Requirements

Analyzing capital requirements is straightforward, if we interpret the payoff function (1)
as the result of debt-financed investment. For E dollars of equity, a trader can borrow D
dollars. The balance sheet total is thus D +E, and the equity ratio is E/(D +E). If the
regulator stipulates stricter capital requirements, the equity ratio must increase; hence, D
must decline. Because β = r D/(D+E), a smaller D leads to a smaller β. However, based
on Proposition 2, we know that a smaller β tends to entail a unique rational expectations
equilibrium and thus no bubble. Hence, stricter capital requirements reduce the range of
parameters in which bubbles are possible.

Recall that if the price path is too steep, bubbles do not exist because the potential bubble
is highly likely to burst. Therefore, traders cannot be compensated for an investment in
an overpriced asset by further phantasies regarding price increases. However, if traders
are highly leveraged, they do not shun investment in overpriced assets and can easily be
compensated. Because capital requirements decrease leverage, they can eliminate potential
bubbles. Furthermore, note that a policy that reduces β also reduces the steady-state
price. Hence, the policy enhances welfare in the steady state in addition to potentially
eliminating bubbles.

5 Conclusion

Our model endogenizes a specific reason why the price of an asset may deviate from its
fundamental value. If the market depth is unknown, a trader (banker) may be willing to
spend more than the fundamental value on an asset because she expects to earn even more
when she sells the asset. This price deviation can occur with unchanged fundamentals,
as it is completely driven by expectations. It is dynamic, typically involving large, unpre-
dictable abnormal returns until the bubble bursts. Such bubbles can occur especially if
traders are highly leveraged or receive ambitious compensation packages.

In addition, even in the steady state, leveraged traders (or those with steep incentives)
drive up the price of risky assets to a higher but constant level. The price deviation is
not caused by expectations about rising prices, but by traders’ risk-loving behavior. It
involves no dynamics and is therefore not a bubble, in our definition.
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These two mechanisms are consistent with anecdotal evidence. During the dot-com bubble
(1998–2001), fantasies about the potential of internet firms were exuberant. The asset
prices of these firms might have been even more exaggerated due to the traders’ leverage,
even absent a dynamic bubble. Hence, leverage allows the exuberance to appear magnified.
When expectations became more realistic, asset prices collapsed because the correction of
expectations was again magnified. This complete argument follows from the static price
deviation due to leverage. According to our model, the story applies especially to risky
assets, such as the stock of dot-com firms.

Following the “as long as the music is playing, you’ve got to get up and dance” explanation
for the recent US housing bubble, managers bought securities because they assumed they
could sell them at a higher price later, which increased prices. This argument follows
from the unknown market depth. According to our model, the story applies especially to
fundamentally safe assets, such as real estate.

Also the policy measures differ between such a bubble and a static price deviation. A
bonus cap can render bubbles impossible, but it has no impact at all on constant price
deviations. Our model suggests several further ways to avoid bubbles. By virtue of
its relative simplicity, the model lends itself to discussions of related phenomena. For
example, one could consider multiple assets and discuss whether the collapse of a bubble
in one market can be contagious for other markets. One could also apply bubbles to macro
models and investigate business cycle and growth effects. Especially after the recent burst
of the housing bubble, applications seem both numerous and relevant.

A Appendix: The Participation Constraint of Households

In this appendix, we investigate the circumstances in which households are willing to invest
through traders.21 The answer depends on households’ alternative opportunities. We have
assumed that the risk-free return is Y for traders but only λY < Y for households. If
there were no risky assets, households would always invest through traders. However, in
the presence of risky assets, there are several reasons why households might not do so. For
simplicity, we analyze the decision of households to lend to traders in the setting of debt-
financed investment. As shown below, all derivations are identical in the interpretation of
delegated investment.

First, even in the absence of a bubble, households anticipate that traders might invest in
an overvalued asset. The probability depends on the price and thus on the market capi-
talization of the risky asset. Willingness to lend also depends on households’ expectations
regarding market depth. For a given lower bound of N , more uncertainty about N implies
a higher expected N . The market capitalization is then smaller compared to total wealth,
and the probability that a trader invests in the asset is lower. We derive a condition under
which households lend to traders.

21For γ < 1, bubbles can emerge even if traders can only invest their own funds. Household investment
is thus crucial only for γ ≥ 1, we therefore concentrate on that case in this section.
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Second, within a bubble, households are even more reluctant to lend because they suffer
from a bursting bubble. This condition implies that households might be willing to lend
in the absence of a bubble but not in the presence of a bubble. As the bubble evolves,
the probability of a burst increases; hence, a fortiori, households become more reluctant
to invest. If households reduce their lending (or stop lending completely), the bubble will
likely burst because the feasibility condition becomes stricter. By backward induction, the
bubble then cannot emerge in the first place. We can show that given all other parameters,
a λ̄ > 0 exists such that for any λ ≤ λ̄, the participation constraint of households does
not constrain any bubble equilibrium. Furthermore, we derive λ̄ for trinomial bubbles.

To maintain the problem’s tractability, we impose two additional assumptions. First,
traders and households know that there is enough money in the market to support the
current price, but they do not know more. Hence, at a current price p, the minimum N0

satisfies p = N0 (D + E). Second, households possess complete bargaining power.

For the case of debt-financed investment, traders must thus be indifferent between bor-
rowing D and investing D + E, and simply investing E. Hence,

Y E = Y (D + E)− r D =⇒ r = Y =⇒ β = Y
D

D + E
, (28)

as in (1). Because D/(D +E) is a trader’s leverage, β is simply the risk-free gross return
times leverage. In the case of delegated investment with bonus contracts, traders must be
indifferent between accepting and declining them. Hence,

0 = max{α(Y − β); 0} =⇒ β = Y. (29)

Comparing equations (28) and (29) shows that, as in the main text, the setup is equivalent
to the setting of debt-financed investment with E set to zero. All results thus carry over to
the case of bonus contracts. We begin by discussing trinomial bubbles, always assuming
that log F (N) is exponentially distributed.

The Steady State. The asset price in a steady state is provided by (4), p = d q/
(
Y −

q − β (1− q)
)
. A household investing D can always obtain λY D from storage. When the

household delegates investment to a trader, it does not know whether the trader uses the
money to buy a risky asset. An aggregate amount of p is invested into the risky asset, so
the remaining N (D + E) − p is invested safely. The probability of a risky investment is
thus p/(N (D + E)). In this case, the investor is repaid rD = Y D only with probability
q. If the trader stores the capital and earns a gross return Y , the household is repaid with
certainty. The expected return to a household in steady state is thus∫ ∞

p/(D+E)

( p

N (D + E)
q Y D +

N (D + E)− p

N (D + E)
Y D

)
f(N) dN.

This value must at least match λY D. The density f(N) depends on the available in-
formation about N . Because N ≥ N0 = p/(D + E), the conditional distribution is
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F (N) = 1− (N (D + E)/p)−γ . The expected return then becomes

1 + q γ

1 + γ
Y D ≥ λY D =⇒ λ ≤ 1 + q γ

1 + γ
. (30)

Otherwise, the market breaks down. From the households’ point of view, the risk of traders
investing their money in the overpriced risky asset is too high in comparison to storage.
Condition (30) is depicted as a gray grid in Figure 6 (page 32).

For λ below the gray grid, households will invest. For λ above, households will not invest.
The condition does not depend on traders’ equity ratio E/(D + E) (upper picture). The
riskier the asset (low q), the more careful are households. The higher Y , the more willing
are households to participate (lower picture). The impact of γ is barely perceptible. For
higher γ, households are less willing to participate because for a given N0 a high γ implies
an expected smaller market depth, which makes investment in the risky asset rather likely.

The Example Bubble. Consider the case of a bubble with a trinomial price path and
logN exponentially distributed. The current price is pt, and the next period’s price will
be pt+1 = φt pt. At this point, the household faces a twofold risk. The trader might invest
into the risky asset, and if she does, the bubble might burst. Actually, the bubble bursts
if N (D + E) < φt pt. In this case, the household receives back p/pt times its investment
D. With r = Y , we can thus calculate the household’s expected return as

g(φt) :=

∫ φt pt/(D+E)

pt/(D+E)

( pt
N (D +E)

q
p

pt
D +

N (D + E)− pt
N (D + E)

Y D
)
f(N) dN

+

∫ ∞

φt pt/(D+E)

( pt
N (D + E)

q Y D +
N (D + E)− pt
N (D + E)

Y D
)
f(N) dN (31)

=
D

γ + 1

(
γ q

p

pt

(
1− 1

φγ+1
t

)
+ Y

(
1 +

γ q

φγ+1
t

))
. (32)

This term must exceed λY D; hence, we can calculate a critical λ̄. If λ is above this
critical point, then households are better off with the opportunity to buy the safe asset
themselves, and they do not participate. The critical λ̄ depends on pt and φt. As the
bubble evolves, both pt and φt increase. Both effects reduce households’ expected return
(32). Consequently, as the bubble evolves, λ̄ decreases, and households might become
unwilling to lend at a certain stage. The expected negative value of potential investment
into the bubbly asset can then no longer be compensated with possible interest from
investment in storage. The bubble then bursts with certainty. However, this event can
be anticipated. Hence, the bubble cannot emerge in the first place; the price path is then
unique. To derive a condition, we must verify whether households are willing to invest
even at arbitrarily high pt. The first addend in the brackets in (32) vanishes, and we can
set φt to the limit φ. The expected return (32) becomes

D

γ + 1

(
1 +

γ q

φ1+γ

)
Y. (33)

28



This value must exceed λY D. Solving for λ, a bubble can thus evolve only if

λ ≤ 1 + γ q/φγ+1

1 + γ
, (34)

with φ defined by (16), Y − β = q φ−γ (φ − β). This condition is depicted as the colored
surface in Figure 6. First, note that if (7) fails to hold, then φ = 1, and bubbles are
impossible. In the figure, this effect occurs for high E because traders wish to invest in
a bubble only when they are highly leveraged (or face steep incentives in the delegated-
investment setting) and for low q because traders are deterred by high fundamental risk.
When (7) holds and a φ > 1 is defined, households still participate only if their opportunity
investment is not profitable enough. In the figure, λ must be below the colored surface.
Hence, for parameters below the gray grid, households are willing to participate in the
absence of a bubble. For parameters below the colored surface, households are willing to
participate even if there is a bubble. Between the gray grid and the above colored surface,
households would be willing to participate in the initial stage of a bubble. However, as the
bubble becomes livelier over time, households’ participation constraint is violated. This
condition is anticipated right away, so bubbles cannot emerge. In regions without any
colored surface, bubbles never emerge due to the arguments in Section 3.1, independent
of the households’ participation constraint.

We now have two conditions. If (7) fails to hold, traders do not invest in bubbles. If
(34) fails to hold, households do not lend to traders. How does this new condition (34)
depend on exogenous parameters? The two pictures in Figure 6 show one general property.
Towards the parameter constellation in which bubbles do not exist at all, the colored
surface slopes down because households dislike lending when a bubble is extremely risky,
close to overheating. However, overheating (with certainty) also explains why no bubble
might exist in the first place. Hence, an exogenous parameter that tends to invalidate
condition (7) also tends to invalidate (34). In particular, households are less willing to
lend in a bubble when the underlying asset is risky (low q), when the trader’s capital ratio
E/(D + E) is high, when uncertainty about the market depth N is precise (high γ) or if
the opportunity yield Y is high. Two of these statements deserve additional explanation.
First, why is a household reluctant to lend to a trader with high capital ratio, or one
that that does not face steep incentives in the delegated-investment setting? If the capital
ratio is sufficiently high, bubbles cannot exist because traders themselves refrain from
investing in a bubbly asset. The same is true if the hurdle rate in traders’ bonus contracts
is relatively low. However, if the capital ratio is slightly below, or the hurdle rate is slightly
above this parameter range, traders are already reluctant to invest. Hence, if a bubble
exists nevertheless, its expected price path must be steep. This compensates traders for
investing in the very risky bubbly asset but worsens the prospects for households. Second,
why is the effect of Y negative? The effect of a higher Y is detrimental for households
because with a more profitable safe investment, the bubble must grow faster to achieve
market clearing. It is thus more likely to burst.

Bubbles in General. In the proof of the following theorems, we show analogously to the
main part of the paper that condition (34), stemming from the households’ participation
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constraint, holds not only for our example bubbles with a trinomial price process and
logN exponentially distributed, but also for bubbles in general.

Theorem 2a Define γ as in equation (6) of Theorem 1a. If γ < 1 and/or

λ <
1 + γ q/φγ+1

1 + γ
, (35)

with φ defined implicitly by Y −β = q φ−γ (φ−β), the households’ participation constraint
does not restrict the existence of bubbles. If this condition does not hold, bubbles are
impossible because households do not invest trough traders.

As in Theorem 1a, the statistic γ need not exist. Again, using the supremum for a sufficient
condition and the infimum for a necessary condition, we can prove a more general version
of Theorem 2a.

Theorem 2b Define γ and γ as in equation (8) of Theorem 1b. If γ < 1 and/or

λ <
1 + γ q/φ

γ+1

1 + γ
, (36)

where φ is implicitly defined by Y − β = q φ
−γ

(φ − β), the households’ participation
constraint does not restrict the existence of bubbles. If γ ≥ 1 and

λ >
1 + γ q/φγ+1

1 + γ
, (37)

with φ implicitly defined by Y −β = q φ−γ (φ−β), bubbles are impossible because households
do not invest through traders.

In sum, the households’ participation constraint does limit the possible existence of bub-
bles. If γ < 1, bubbles can also exist without limited liability. If traders possess own
funds, they invest their own money, and the households’ participation constraint is not
even needed. For γ ≥ 1, there is a critical value λ̄ such that for smaller λ households
participate even in fully-grown bubbles. For larger λ, households would not participate;
hence, bubbles cannot emerge. For trinomial bubbles, a necessary and sufficient condition
is (34). This condition is pictured in Figure 6; the comparative statics are provided in the
following proposition and summarized in the right column of Table 3 (page 11).

Proposition 8 In a bubble, households tend to invest through traders for high investment
advantages of traders (low λ), low risk-free returns of traders Y , low fundamental risk
(large q), large uncertainty about market depth (low γ), and high leverage/steep incentives
(high β).
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Note that in addition to the added effect of λ, the effects of variations in the parameters
of the model provide the same conclusions as in Proposition 2. We can therefore conclude
the following.

Proposition 9 Parameter changes that increase households’ incentives to lend to traders
also make bubbles more likely. In particular, policy measures that tend to make bubbles
impossible according to Section 4 also tend to discourage households from investing through
traders.

Because the same parameter constellations that induce households to invest through
traders make bubbles possible, maximizing individual household payoffs by investing
through traders increases the probability of bubbles via increased leverage or the usage of
bonus contracts. In turn, bubbles reduce the expected payoff of households in equilibrium
relative to the no-bubble case.
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Figure 6: Parameter Range in which Bubbles are Possible

In the first picture, γ = 2, and Y = 1.2, whereas q and β vary. In the second picture, q = 0.9, and
E/(D + E) = 0.1, and γ and Y vary. For parameters below the gray grid, households are willing to
participate in the absence of a bubble. For parameters below the colored surface, households are willing
to participate even if there is a bubble. The first picture is comparable to Figure 2. Figure 2, read at
Y = 1.2, shows the range of q and β in which traders would invest in a bubble. The surfaces in Figure 6
exists only in this region. The surfaces then show how small λ must be such that households will invest in
the presence of a bubble.
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B Proofs

Proof of Proposition 1. The proof consists of taking simple derivatives. �

Proof of Theorems 1a and 1b. The proof of Theorem 1a consists of the following
proofs of Lemma 1 and 2. The proof of Theorem 1b follows.

Proof of Lemma 1. In the exposition in the main text, we have treated only the case
in which traders are not paid if a bubble bursts. Hence, we begin the proof of the lemma
by providing a condition for this case and analyzing the alternative. If a bubble bursts
without the firm going bankrupt, the firm still pays the dividend. The payment to the
trader is then

α max

{
d

pt
+
p

pt
− β; 0

}
= α max

{
d+ d q

Y−q−β (1−q)

pt
− β; 0

}
. (38)

This equation implies that if the price is only slightly above the steady-state price p (i. e.,
the bubble is small), the trader receives a payment even when the bubble bursts. The
corresponding condition is

pt < p̌ :=
(
d+

d q

Y − q − β (1− q)

)/
β. (39)

Now, if pt is less than p̌ such that (39) is satisfied, a modified version of (14) applies. In
market equilibrium,

α (Y − β) = Qt α
(
(pt+1 + d)/pt − β

)
+ (q −Qt)α

(
(p + d)/pt − β

)
⇐⇒ Y − β

q
=
( pt
pt+1

)γ pt+1

pt
+
(
1−

( pt
pt+1

)γ) p

pt
+
d

pt
− β. (40)

Again, beginning from pt, we have an implicit equation for pt+1 in a rational expectations
equilibrium. Substituting pt+1 = φt pt, we obtain

φγt
Y − β

q
= φt + (φγt − 1)

p

pt
+ φγt

( d
pt

− β
)
. (41)

However, in a bubble, the price pt increases over time and eventually exceeds the threshold
p̌. Therefore, to determine whether bubbles are feasible, it suffices to consider the case
pt > p̌ as done in the main text.

We have already argued that the probability that a bubble bursts increases with pt. Be-
cause pt is an increasing function of t, a bubble is sustainable if and only if it is sustainable
for pt → ∞. Hence, if (16) has a solution for φ, the bubble is sustainable. Consider the
limiting case in which the curve q φ−γ (φ−β) and the line Y −β only touch. At the point
of contact, the slopes must be equal,

φ−γ−1 q (γ β + (1− γ)φ) = 0, (42)

33



which implies that the point of contact is φ = β γ/(γ − 1). Substituting this solution in
(16), we find that the limiting case is obtained at

Y − β = q
( β γ

γ − 1

)−γ ( β γ

γ − 1
− β

)
. (43)

Some algebra yields (7), the condition under which (16) has a solution. In a bubble,
prices must increase; otherwise, the algebraic term for the probability of a burst would
become negative. Formally, φ must exceed 1 at the curve’s highest point. Given that
limφ→∞ q φ−γ (φ− β) = 0 and q (1− β) < Y − β, it is sufficient to show that φ > 1 at this
point. This is the case for β > γ−1

γ . Note that because β ≥ 0, this condition is always
fulfilled for γ < 1. Furthermore, inequality (7) is not a necessary condition in this case, as
the curve q φ−γ (φ − β) increases monotonically, starting from a value lower than Y − β.
Hence, there always exists an intersection, which implies that bubbles are always possible
for γ < 1. Finally, for γ = ∞, the condition β > (γ − 1)/γ becomes β > 1. However,

in (7), the term γγ
( β
γ−1

)γ−1
converges to ∞ for β > 1, which implies that (7) cannot be

met; bubbles are impossible for γ = ∞. �

Proof of Lemma 2. Assume that a price process exhibits a bubble, i.e., pt > p at a date
t, and that p̃t+1 is distributed with distribution F̄ (p̃t+1). Then, in a rational expectations
equilibrium,

α (Y − β) =

∫ ∞

0
q
p̃γt
p̃γt+1

α max
{ p̃t+1 + d

pt
− β; 0

}
dF̄ (p̃t+1),

Y − β

q
=

∫ ∞

0
h(p̃t+1) dF̄ (p̃t+1), where (44)

h(p̃t+1) := max
{ pγt
p̃γt+1

( p̃t+1 + d

pt
− β

)
; 0
}

is an auxiliary function. The pt+1 implicitly defined by (14) solves this equation for a
distribution that has probability mass only at one point pt+1 (and zero and p). From
this three-point distribution, can we shift probability mass to other prices such that the
above (44) still holds? The answer depends on the shape of h(p̃t+1). Some straightforward
analysis shows that h(p̃t+1) is zero up to p̃t+1 = β pt − d, then increases and decreases
again. For p̃t+1 → ∞, the value approaches zero. The maximum of the integral is reached
if all probability mass is located at

p̃∗t+1 = γ
β pt − d

γ − 1
> β pt − d.

Hence, a trinomial process with the possible events p∗t+1, p, and 0 maximizes the right
side of (44). Shifting probability mass to other parts of h(p̃t+1) reduces the value of the
integral. Note that no bubble can emerge if the right side of (44) is lower than the left side
for any price path. We can therefore conclude that if no trinomial bubble process exists,
no other bubble process can exist either. However, if a trinomial bubble process exists, it
exemplifies a general bubble process. As a consequence, (7) is the general condition for
the existence of bubble processes in a rational expectations equilibrium. �
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Proof of Theorem 1b. Based on the definition of γ, for all ε > 0, there exists an N
such that for all N > N ,

N
f(N)

1− F (N)
< γ + ε.

Now, choose ε sufficiently small such that (10) holds even after substituting γ by γ+ε. This
is possible because the inequality is strict and continuous in γ. Now, if the distribution
of logN were exponential with parameter γ + ε, there would be multiple price processes
(bubbles). However, for the actual distribution F (N), the probability of a bubble burst
is even smaller. Consequently, if (10) holds, bubbles are possible. The argument for the
second statement is analogous. �

Proof of Proposition 2. There are two conditions that might become increasingly
strict or lax. First, condition (7) is satisfied if and only if

(Y − β) γγ
( β

γ − 1

)γ−1 − q ≤ 0. (45)

The derivative of this term with respect to q is negative, so the condition is more likely to
be satisfied for large q. The derivative with respect to Y is positive; hence, (7) holds for
small Y . The derivative with respect to γ is

(Y − β) γγ
( β

γ − 1

)γ−1
log

β γ

γ − 1
.

Recall that the point at which the curves touch is φ = β γ/(γ − 1) > 1. The above
logarithm is therefore positive, and the complete derivative with respect to γ is positive.
A larger γ makes bubbles less likely. Finally, we wish to show that an increase in β makes
bubbles more likely, i. e., an increase in β reduces the left side of (45) whenever this value
is negative. We first show that the left side of (45) is concave in β. It is continuous, and
the derivative with respect to β is

γγ
( β

γ − 1

)γ−1 Y (γ − 1)− β γ

β
,

which is positive for β < Y (γ − 1)/γ and negative for β > Y (γ − 1)/γ. It thus creates
concavity. We must consider the region in which (45) holds. In the decreasing region
(large β), the proof is complete. In the increasing region (small β), remember that φ > 1
must hold; hence, β > (γ − 1)/γ. At β = (γ − 1)/γ, the left side of (45) becomes
1−q+γ (Y −1) > 0. Hence, an increase in β always reduces the left side of (45) if bubbles
are possible, which completes the argument. The second condition, β > γ−1

γ , has the same
comparative statics. �

Proof of Proposition 3: We need to examine the expected consumption in a bubble.
Cohort 0 obtains p0 > p from selling the asset. Cohort 1 buys the asset at price p0 but
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expects the price to rise to p1 with probability Q0, to fall to p with probability q − Q0,
and to fall to 0 with probability 1− q. Hence,

E0[C
′
1] = Q0 (d+ p1) + (q −Q0) p+ (N (D + E)− p0)Y, (46)

and so forth. Now consider the welfare differences

C ′
0 − C0 = p0 − p,

E0[C
′
1 − C1] = Q0 (p1 − p)− Y (p0 − p),

E0[C
′
2 − C2] = Q1Q0 (p2 − p)−Q0 Y (p1 − p), (47)

and so forth. Hence, the aggregate welfare difference amounts to

E0[ΔW ] = (p0 − p) +

∞∑
t=1

ρt
t−2∏
t′=0

Qt′
(
Qt−1

(
pt − p

)− Y
(
pt−1 − p

))

=
∞∑
t=0

ρt (pt − p)
(
1− ρ Y

) t−1∏
t′=0

Qt′ , (48)

which is negative if ρ Y ≥ 1. �

Proof of Proposition 4. The proof is in the main text. �

Proof of Proposition 5. The proof is in the main text. �

Proof of Proposition 6. The proposition becomes obvious by a geometric argument.
Bubbles are possible if (25) has a solution in φ. The right side of (25) resembles the
thick curve in Figure 4. For ψ = 0, the left side is identical to the horizontal line. An
increase in ψ leaves the axis intercept constant but increases the slope and is equivalent to
a counterclockwise rotation. Clearly, for a certain ψ, the line will barely touch the curve.
For even larger ψ, bubbles cease to exist. The critical ψ can be calculated algebraically,
but the equation yields no further insights. �

Proof of Proposition 7. Consider a very general tax system, and denote a tax on
transactions of the safe asset by τ , a tax on selling the risky asset by τ ′′, and a tax on
buying the risky asset by τ ′. Hence, τ ′′ = 0 means that the buyer of an asset must pay
the tax (the case analyzed in the main text), whereas τ ′ equals zero if the seller pays the
tax. The equilibrium condition (16) is then

Y − β − τ = q φ−γ
(
φ (1− τ ′′)− β − τ ′

)
.
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Following the steps taken in the proof of Lemma 1 yields φ = γ(β+ τ ′)/[(γ−1)(1− τ ′′)] as
the potential touching point of both sides of the above equation. The condition for φ > 1
at this point becomes

β + τ ′

1− τ ′′
>
γ − 1

γ
. (49)

The modified condition for the existence of bubbles is then(
γ

1− τ ′′

)γ (β + τ ′

γ − 1

)γ−1 ≤ q

Y − β − τ
.

The right side of this equation increases in τ , whereas the left side increases in τ ′′ and τ ′.
Considering equal tax rates on the risky and the safe assets, one can use equation (49) to
show that the derivative of the right side with respect to the common tax rate is larger
than the derivative of the left side for both cases, τ = τ ′′ and τ ′ = 0, or alternatively
τ = τ ′ and τ ′′ = 0. �

Proof of Theorems 2a and 2b. For trinomial bubbles, we have already derived a
necessary and sufficient participation constraint, equation (34). Let us first show that the
condition remains valid for non-trinomial bubbles. It is clear that if (34) holds, households’
participation constraint does not curb the existence of multiple equilibria because the
trinomial bubble is one example of an alternative price path. It remains to be demonstrated
that if (34) fails to hold, households’ participation constraint is violated also for any other
type of bubble. Hence, we need to show that of all possible bubble paths, the trinomial
bubble is the most preferred. Then, if for a certain parameter constellation, trinomial
bubbles do not exist because of households’ participation constraint, households are even
more reluctant to invest in a non-trinomial bubble.

As in the proof of Lemma 2, the function h(pt+1) provides the value of the future price for
the trader, considering that the bubble might burst. As defined in (31), g(pt+1) provides
the return to households. The more evolved a bubble is, the more reluctant households are
to invest; hence, we can concentrate on large prices pt+1 and consider the relative return
φ rather than the absolute price pt+1. The functions then become

h(φ) = q φ−γ (φ− β), and

g(φ) = D/(γ + 1)
(
1 + γ q φ−γ−1

)
. (50)

These functions are plotted in the left panel of Figure 7. The lower blue curve defines the
market clearing condition. In a trinomial bubble, the market clears when the blue curve
intersects with Y −β (dashed line), and traders are indifferent with respect to investing in
the bubbly asset. In a general bubble, the return can assume several values with different
probabilities. This equation defines a probability distribution for φ. For the market to
clear, Eφ[h(φ)] = Y −β must hold. The households’ expected return is then Eφ[g(φ)]. We
need to show that for all distributions of φ with strictly positive variance, the households’
expected return falls short of that in the trinomial bubble in which φ assumes only one
value. We hence need to solve

maxEφ[g(φ)] s. t. Eφ[h(φ)] = Y − β, (51)
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Figure 7: Market clearing condition h and households participation constraint g

Parameters are γ = 2, β = 0.9, q = 95%, d = 1, and Y = 1.1.

where the max operator is taken over all probability distributions of φ.

We rescale the problem by distorting the φ-axis. We substitute h(φ) �→ x; thus, φ �→
h−1(x). This equation leads to the right panel of Figure 7. The function h(φ) has become
h(h−1(x)), the identity, and g(φ) has become g(h−1(x)), a concave function. Problem (51)
becomes

maxEx[g(h
−1(x))] s. t. Ex[x] = Y − β, (52)

where the max operator is taken over all probability distributions of x. In the figure,
because g(h−1(x)) is concave, a mean preserving spread deteriorates Ex[g(h

−1(x))]. Prob-
lem (52) is thus solved by the degenerate one-point distribution. Hence, if we show that
g(h−1(x)) is always concave, then households prefer trinomial bubbles in which only one
φ is possible. The implicit function theorem yields

d2

dx2
g(h−1(x)) =

h′(φ) g′′(φ)− h′′(φ) g′(φ)
h′(φ)3

. (53)

Any φ with positive probability mass must be in the increasing part of h(φ); hence,
h′(φ) > 0, and the denominator h′(φ)3 is positive. The numerator is

Dγ q2 φ−2 (γ+2)
(
β γ − 2φ (γ − 1)

)
. (54)

If the variance of N is finite, we must have γ ≥ 2. This condition implies β γ ≤ 2φ (γ −
1); thus, the numerator is negative. Consequently, g(h−1(x)) is always concave, and
households prefer trinomial bubbles above all other types. If households’ participation
constraint is violated within the class of trinomial bubbles, it is violated for any bubble.

The remainder of the proof is analogous to that of Theorem 1b. For all ε > 0, there is an
N > 0 such that for all larger N , we find functions with decay parameter γ + ε (or γ − ε)
that can be used as a lower (or upper) bound. In sum, if traders are willing to invest in
bubbly assets according to Theorems 1a and 1b, then if (36) holds, the price path is not
unique. If (37) fails to hold, the price path is unique. �
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Proof of Proposition 8. Consider condition (35). The effect of changes in λ is straight-
forward, but when evaluating the effects of changes in the other parameters, one must con-
sider their effect on φ via the market clearing condition (16), q φ−γ(φ− β)− (Y − β) = 0.
Implicitly differentiating this equality shows that φ depends positively on Y and γ and
negatively on β and q. Recall that the right side of (16) depends positively on φ in the
relevant region (see footnote 16). The derivative of q φ−γ(φ− β)− Y + β with respect to
φ is hence positive. Furthermore, the right side of condition (35) depends negatively on φ
and γ and positively on q, which completes the proof.22 �

Proof of Proposition 9. The proof of Proposition 8 shows that changing the parame-
ters β, γ, q, and Y in a way that makes bubbles less likely according to Proposition 2 also
tends to discourage households from investing through traders. As the policy measures
in Section 4 aim directly or indirectly to change these parameters, the measures tend to
make bubbles impossible because there is no bubble equilibrium (Proposition 2), and/or
households stop lending to traders (Proposition 8). The only policy measure that func-
tions differently is the financial transaction tax. The new participation constraint of the

household under a tax system as discussed in the proof of Proposition 7 is λ < 1+γ q/φγ+1

1+γ ,
with φ implicitly defined by

φγ (Y − β − τ) = q
(
φ (1− τ ′′)− β − τ ′

)
.

Note that we assume that the tail statistic γ exists. Otherwise, the statistics γ and γ must
be used (see the proof of Theorems 2a and 2b). Implicit differentiation of the transformed
market-clearing condition q

(
φ (1−τ ′′)−β−τ ′)−φγ (Y −β−τ) = 0 shows that φ depends

positively on τ ′ and τ ′′ but negatively on τ . Furthermore, setting τ = τ ′ and τ ′′ = 0 or
alternatively τ = τ ′′ and τ ′ = 0 provides a negative dependence of φ on τ . Combining this
result with the discussion in the proof of Proposition 8 shows that a) levying a financial
transaction tax only on the risky asset (τ ′ > 0 and/or τ ′′ > 0) can discourage households
from investing through traders, and b) levying a tax on the risky and the safe asset (τ = τ ′

and τ ′′ = 0 or τ = τ ′′ and τ ′ = 0) raises incentives for households to invest through traders.
�
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Pástor, Ľ., and P. Veronesi (2006): “Was there a Nasdaq Bubble in the Late 1990s?,”
Journal of Financial Economics, 81(1), 61–100.

(2009): “Technological Revolutions and Stock Prices,” American Economic Re-
view, 99(4), 1451–1483.

41



Plantin, G., and H. S. Shin (2011): “Carry Trades, Monetary Policy and Speculative
Dynamics,” CEPR Discussion Paper 8224.

Samuelson, P. (1958): “An Exact Consumption-Loan Model of Interest With or Without
the Social Contrivance of Money,” Journal of Political Economy, 66(6), 467–482.

Santos, M. S., and M. Woodford (1997): “Rational Asset Pricing Bubbles,” Econo-
metrica, 65(1), 19–57.

Scharfstein, D., and J. Stein (1990): “Herd Behavior and Investment,” American
Economic Review, 80(3), 465–479.

Scheinkman, J., and W. Xiong (2003): “Overconfidence and Speculative Bubbles,”
Review of Political Economy, 111(6), 1183–1219.

Tirole, J. (1982): “On the Possibility of Speculation under Rational Expectations,”
Econometrica, 50(5), 1163–1181.

(1985): “Asset Bubbles and Overlapping Generations,” Econometrica, 53(6),
1499–1528.

Weil, P. (1987): “Confidence and the real Value of Money in an Overlapping Generations
Economy,” Quarterly Journal of Economics, 102(1), 1–22.

Wermers, R. (1999): “Mutual Fund Herding and the Impact on Stock Prices,” Journal
of Finance, 54(2), 581–622.

Zeira, J. (1999): “Informational overshooting, booms, and crashes,” Journal of Monetary
Economics, 43(1), 237–257.

42


