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1. Introduction

In June 2008, The Economist published an article discussing the pros and cons of a preceding
oil price boost. On the one hand, the rise might be considered as “a gigantic carbon tax”
that helped fighting global warming. On the other hand, it particularly hurt the poor who
spent a considerably higher proportion of their income on fuel than the rich. Financial com-
pensations for the core energy demand could help to solve the issue. However “it seems odd
to try to prevent energy use with higher taxes ...and then to subsidise it” (The Economist,
2008). The article thereby raised the question how to design green taxes optimally while
accounting for distributive concerns. Rising awareness for global environmental problems
under persisting inequality has increased the salience of that question. I propose an answer
with a focus on the optimal level of green taxes and the relation to redistribution. Despite a
huge theoretical literature on environmental taxation and quite some empirical interest on
its impact on poor households, the normative question of the optimal response to inequality
concerns in the environmental tax design has not had that much of attention.

I employ a simple Mirrlees (1971) income taxation framework which I extend by consump-
tion externalities as proposed by Cremer et al. (1998). Within this framework, a welfare-
optimising government uses non-linear income taxes to redistribute and Pigouvian taxation
to reduce negative externalities (Pigou, 1932). I show that the two tax design problems are
interconnected. In particular, the higher the level of redistribution, the lower the optimal
level of environmental taxation. The optimal level has two determinants. First, the marginal
social damage caused by the externality. Second, the cost of public funds, defined as the im-
mediate marginal welfare losses associated with income tax collection.! If the government
puts more weight on redistribution, it will have to accept a higher cost of public funds. Mar-
ginal revenues from the environmental tax are then more valuable from the government’s

point of view. Contrary to naive intuition, this calls for a lower environmental tax rate. The

!In formal terms, the cost of public funds is the Lagrangian multiplier of the resource constraint.



reason is that the tax rate is at its efficient level if the marginal revenues exactly compensate
society for the marginal external harm. The more valuable the marginal revenues are, the
less one needs to compensate for the marginal externality. To put it another way, consider
the Pigouvian tax as a bribe that consumers pay the authorities in order to get allowance for
pollution. The government is willing to accept a lower bribe if its utility per dollar is higher.
Exactly this is the case if the cost of public funds is higher.

I measure the level of redistribution by a parameter that corresponds to the weight of
less productive agents in a social-welfare function. As explained, Pigouvian taxation needs
to decrease if the parameter increases. When first-best instruments are available, however,
the result reverses. Without distortions, the cost of public funds actually decreases in the
parameter, as the disutility of the hard working high productive agents receives less weight
in the welfare function. Hence the first-best level of Pigouvian taxation increases with the
level of redistribution.

My main contribution with respect to the existing literature is to draw attention to the
level of Pigouvian taxation. Most of the respective literature focuses on tax rules and con-
cludes that the distortions caused by second-best instruments do not alter these rules com-
pared to first-best. I show that, despite the first-best shape of these rules, the second-best
level of Pigouvian taxation in fact depends on the distortions and the available income tax
instruments.

The paper also contributes to a branch of the literature that uses linear tax schemes to
analyse the double-dividend hypothesis. Major insights from the linear model carry over to
my setting with incentive constraints and optimal taxes. In particular, the optimal environ-

mental tax is lower in second- than in first-best.

1.1. Related literature

This paper is part of a literature in which Pigouvian taxation meets non-linear income taxes

under asymmetric information (Mirrlees, 1971). Cremer et al. (1998) show that under the



separability assumptions from Atkinson and Stiglitz (1976) the optimal Pigouvian tax rate
is uniform, i.e., it does not discriminate between agents. Gauthier and Laroque (2009) gen-
eralise the insight: a certain part of the second-best problem can be separated such that
first-best rules apply for that part of the problem. Examples include Pigouvian taxation and
the Samuelson Rule. Hellwig (2010) presents a similar result.

Kopczuk (2003), Pirttila and Tuomala (1997), Jacobs and de Mooij (2011), and Kaplow
(2012) explicitly centre on externality taxation within a general (income) taxation problem.
In terms of questions posed their contributions are close to mine. Their answers have a
different focus, though.

Kopczuk (2003) proposes to decompose the general taxation problem with externalities
into two parts: “First, calculate the appropriate Pigouvian tax necessary to correct the ex-
ternality. Then, with the externality accounted for, the usual second-best problem can be
solved using standard formulae” (p. 84) His result holds for a variety of specifications (in-
cluding the model presented here) and generalises the "principle of targeting’ (Dixit, 1985).
Kopczuk (2003) also points out, though, that actually the two parts are interrelated: the
Pigouvian tax rate might only be known after the whole problem is solved. My comparative
statics analysis characterises this interrelation.

Kaplow (2012) summarises his findings by stating “that simple first-best rules - unmod-
ified for labor supply distortion or distribution — are correct in the model examined” My
analysis highlights that distribution and distortions have a significant influence on environ-
mental policy with respect to tax levels, though.

Jacobs and de Mooij (2011, p. 2) find that the “optimal second-best tax on an externality-
generating good should not be corrected for the marginal cost of public funds”. However,
they use a non-standard definition for the cost of public funds. Our formal analyses are
consistent but focus on different interpretations.

An earlier branch of the literature, dating back to Sandmo (1975), examines environ-



mental taxation as part of linear tax systems. Starting with Bovenberg and de Mooij (1994),
the linear-taxation model was a primer workhorse model in the discussion of the double-
dividend hypothesis.? By a central result of this literature, the second-best environmental
tax is below the first-best one (e.g. Orosel and Schéb, 1996). As I show, these insights carry
over to the case of optimal/non-linear income taxation. Metcalf (2003) uses the linear model
to carry out a comparative static analysis with a focus on environmental quality.

My analysis also relates to the literature on comparative static properties of non-linear
taxation, with and without public goods (Weymark, 1987; Brett and Weymark, 2008; Bier-
brauer and Boyer, 2010), and to applied analyses of the question how to overcome negat-
ive distributional effects of environmental taxes (like Metcalf, 1999; West, 2005; Ekins and
Dresner, 2004). Rausch et al. (2011) recently studied the U.S. economy, Kosonen (2012) did so
for the European Union. The empirical papers investigate the relationship between house-
hold income and emission-heavy consumption like driving or heating in order to check
whether environmental taxes are regressive. They also discuss distributional impacts of en-
vironmental taxes and policies to support the poorest household. I add insights from norm-
ative theory to the discussion. In particular, I show that (a) emission-heavy consumption
should not be subsidised for poor households and (b) whether or not environmental taxes
are regressive is not per se relevant for their optimal level.

The paper is organised as follows: Section 2 presents the model. Section 3 states the rule
for optimal internalisation. Section 4 introduces tax systems. Section 5 analyses optimal
environmental taxes and provides the main results. Section 6 concludes. The Appendix
holds proofs and formal results. It also characterises optimal allocations and discusses corner

solutions.

2See Goulder (1995), Schdb (1997, 2005), Bovenberg (1999) or Bovenberg and Goulder (2002) for more details
and surveys on the double-dividend discussion.



2. Model

2.1. Production

The model is based on Cremer et al. (1998). It considers three different goods. First, an in-
termediate good that is referred to as output and is denoted by Y. It serves as the numéraire
and may be interpreted as money. Second, a clean, completely private consumption good, C,
and third, a dirty consumption good, D. The intermediate good can be transformed into the
consumption goods at fixed rates of transformation equal to pc and pp, respectively. Para-
meters pc and pp may be interpreted as the producer prices of C' and D. The intermediate
good itself can be produced with a linear technology using labour as the single input good
(but labour is not modelled explicitly). The rate of transformation between labour and the
intermediate good mirrors productivity and is denoted by w. It may be interpreted as the

wage rate.

2.2. Households and allocations

There is a continuum of measure one of agents. They differ in exactly one dimension, namely
their productivity, which can be either low or high. An agent’s type is denoted by 6 €
{L, H}. Their respective productivity is wy € {wy, wy}. The fraction of low-type agents is
denoted by v € (0,1). An allocation A specifies levels of (C, D,Y") for both generic types,

ie, A= (Cp,Dyp,Yy,Cy, Dy, Yy). For a given allocation the utility of an agent of type 0 is

Ub(A) = u(C, D) = 3% = (11 + (1 =) D

Function v is continuously differentiable three times, strictly increasing, strictly concave,

has nonnegative cross derivatives, and satisfies the Inada conditions.? It represents private

SFormally, ucp > 0as wellasug — oo as K — 0, and ug — 0as K — oo, for K € {C, D}. The Inada-
conditions are imposed in order to guarantee strictly positive optimal consumption levels. Strict concavity
guarantees unique solutions.



consumption utility. In order to produce Yy units of output, an agent has to provide Yy/wy
units of labour. This provision is associated with a linear disutility. The last term in the
utility function reflects the externality. Independently of his type, every agent suffers from
the overall consumption of dirty goods, 7D+ (1—)Dpy. The social harm is proportional to
total dirty good consumption, and e > (0. From an agent’s point of view, own consumption
has no negative effect on own utility as a single contribution is negligible in comparison
to the large contribution of others. Individual contributions are in fact zero due to the
assumption of a continuum of agents.*

Notice that all agents in society have quite similar preferences. In particular, their con-
sumption choice for a given budget is identical. Also, they suffer from the externality in
exactly the same way. This is not only a simplification but rather a design choice. If agents
had different tastes for environmental protection, then the optimal policy would obviously
depend on distributional considerations. The homogeneity in agents’ preference allows to

isolate the more subtle relations between equity and environmental policy.

2.3. Social welfare

This paper takes a normative perspective by examining what a social planner (SP) would do

in order to maximise the social welfare function W, defined as

W(A) =aUL(A) + (1 —a)Uy(A), a € (0,1),

where A is the allocation. The welfare function is a weighted sum of the generic types’

utilities. The parameter o measures the weight SP puts on a generic low-type agent. If

“Externalities of this type were termed “atmospheric” by Meade (1952). A different way to interpret the
mechanism is to consider a public good that is provided by nature (like “fresh air” or “nice atmosphere”).
Dirty good consumption reduces the level or quality of the public good, whereat only total consumption
matters. The presented model wold fit this interpretation, with the initial amount of this public good
normalised to zero.



a = 7, then W is the utilitarian welfare function. For « = 1, W would be the Rawlsian
welfare function.

Overall, the economy cannot consume more than it produces in terms of output. Further-
more, an exogenous revenue requirement 7 has to be met. The social planner thus faces a

resource constraint given by

Y(YL —pcCr —ppDr) + (1 = ¥)(Yu — pcCx — ppDp) —r > 0. (1)

If (1) holds and A > 0, then A is feasible. An allocation that maximises I/ among all feasible
allocations is a first-best allocation.

If the social planner does not observe an agent’s type, not all feasible allocations are im-
plementable. If, for instance, an allocation disadvantages the high-type agents, they might
have an incentive to pretend to be low-types, making it impossible to implement this alloc-
ation. As a consequence, under asymmetric information, SP has to ensure that agents do
not want to misrepresent their type. This is the case if the following incentive-compatibility

constraints hold.

uw(Cp, D) — — >u(Cy,Dy) — —, (2)
wr wr
Y; Y;
w(Cy, D) — —+ > u(Cy, Dp) — —. (3)
Wi WH

The underlying idea about the relation between incentive compatibility and decentral imple-
mentation, i.e. taxation, is known as the *Taxation Principle’ (Hammond, 1979; Guesnerie,
1998).° An allocation that maximises welfare among all feasible, incentive-compatible alloc-
ations is a second-best allocation.

By means of the following assumption, I restrict the analysis to the cases in which SP likes

to redistribute from high-type agents to low-type agents.

°For a complete formal argument see Aigner (2011).



Assumption 1. a(1 —y)wy > (1 — a)ywry.

The assumption generally holds if SP puts a sufficiently high welfare weight on low-type
agents. The lower wy, is relative to wy, the lower o may be, because a large difference in
productivity provides an efficiency argument for making high-types work more than low-
types. A low population share v of low-types makes redistribution in their favour very
cheap, hence it also allows for a low a.

Given the shape of u, it is efficient to produce strictly positive amounts of the consumption
goods rather than abstain from economic activity. In turn, agents have to provide output. A
look at Assumption 1 and the definition of W shows that, in terms of welfare, it is always
better to let the high- rather than the low-type agents produce an output unit. Consequently,
high-type agents should produce all output. In first-best, this is indeed the case.® In second-
best, this might be out of reach, as incentive constraints have to be satisfied. It is then
ambiguous whether low-type agents work. My main analysis focuses on the cases in which
they do work, i.e. Y7, > 0. In these cases a reallocation of output provision from low- to high-
type agents improves welfare, but is possible only if high-types’ incentive constraint (3) is
slack. Consequently, at an interior second best allocation, (3) needs to bind. As Assumption
1 favours the low-type agents, their incentive constraint (2) is always slack.’

In Appendix C, I discuss existence and comparative statics properties of second-best al-

locations with Y; = 0.

3. Optimal Internalisation

This section provides a general property of Pareto-optimal allocations, with respect to the
externality. At first sight, the presented rule is identical for first- and second-best allocations.

This is a reason why redistribution and distortions are sometimes considered to have no

If Yy could be negative, (first-best) welfare would be unbounded. Obviously, that is not an option. Accord-
ingly, the nonnegativity constraint for Y7, binds at the first-best allocation.
’See Lemmas 1, 2, 3 in Appendix A for the formal arguments.



structural influence on Pigouvian taxation. In the next step, I show, however, in what way
the first- and second-best rules are in fact different.

To shorten exposition, I use the following notation for J, K € {C, D}. u* := u(Cy, Dy),
ut .= 0u(Cr, Dr)/0Jy, uk; = 0*u(Cr, D) /(0K10J1). Analogous definitions apply to
ufl := u(Cy, Dy). The Lagrangian multiplier of the resource constraint is denoted by .

All results in the current section are derived in Appendix A.

3.1. A rule for optimal internalisation

Both first- and second-best allocation feature the property that the marginal rates of sub-
stitution (MRS) between the two consumption goods are the same for both types of agents.
Rather than being equal to the rate of transformation (namely, producer-price ratio), as

would be the case in an unregulated market, the MRS is equal to

=24 — (4)

This is a standard result in the literature. It follows, for instance, from the more general
analysis by Hellwig (2010). It is driven by the separability feature of the utility functions.
Cremer et al. (1998) point out the relation to the famous result in Atkinson and Stiglitz (1976),
namely that, under the given assumptions, commodity prices should not be distorted, and all
redistribution can be done within the labour market. The intuition of the Atkinson/Stiglitz
result is as follows. By assumption, all agents have the same consumption pattern.® There-
fore the commodity demand cannot be used to screen types and commodity taxation cannot
contribute to relax the equity-efficiency trade-off. Hence there is no point in distorting them.

The intuition carries over partially to the case where an externality is introduced. In fact,

as agents are equal in terms of their consumption preferences and their exposure to the

8More precisely, for a given amount of total consumption spending, all agents consume the same commodity
bundle.

10



externality, there is no point in treating them differently in this respect. Yet, it is no longer
true that optimal redistribution only affects the labour market. Optimal consumption now
depends on multiplier A. The multiplier is crucially related to redistribution. Also, while
at first sight the above formula is the same for both first- and second-best allocation, A is
different in first- and second-best. This has significant consequences for the relation between

the degree of redistribution and the degree of intervention in the commodity market.

3.2. The cost of public funds

There is no universal definition for the (marginal) cost of public funds in the literature.
Jacobs (2012), for instance, recently suggested a definition which implies a marginal cost of
1 for typical optimal taxation schedules. In this paper I stick to the classical definition, also
used in the textbook by Dahlby (2008); the (marginal) cost of public funds measures the loss
in welfare associated with raising tax revenues. Being a cost, the concept does not account
for potential benefits from the revenues. It just tells how (welfare-)costly it is to raise a
(marginal) tax dollar.

As is well known, the so defined (marginal) cost of public funds are equal to A, the Lag-
rangian multiplier for the resource constraint (1). Formally, A = —OW /Or, where W is the
optimised value of the welfare function. Throughout the paper I normally drop the explicit
“marginal” when referring to the cost of public funds - relying on the fact that concept is
per se a marginal one. Also, “multiplier” interchangeably refers to ), i.e., the cost of public
funds.

The quasi-linearity in labour allows for closed-form solutions for the multiplier and plainly
reveals the dissimilarity between first- and second-best. It also shows the dependency on

the underlying parameters « and 7.

11



Second-best The value of the multiplier at an interior second-best allocation is

1 —
O )
wr, WH

(5)

To grasp the intuition, note that agents do not benefit from 7, so an increase is pure bur-
den. A way to finance the additional requirement is to increase output. As the incentive
constraint for the high-type agents is binding, their output may only be increased if the
low-type’s output is increased as well. The weighted welfare loss of such an increase is
equal to or/wy, for the generic low-type and (1 — a) /wy for the generic high-type. Notice
that the multiplier does not depend on the population shares. The reason is that a higher
revenue requirement has to be produced by all agents (independently of their type) in order

to sustain incentive compatibility.

First-best The multiplier at the first-best allocation is

11—«

M= —— —
wp(1—7)

(6)
Because only high-types work in first-best, only parameters related to them matter for A", If
SP needs an additional unit of revenue, he will make high-type agents work more. As there
are only 1 — - high-type agents, the generic high type has to provide 1/(1 — ) (marginal)
units of output and needs to work 1/(wg (1 — 7)) additional hours. The incurred marginal
disutility is weighted by 1 — a.

The multipliers are not only different in size, but also with respect to their directions of
change in the parameters o and 7. The welfare weight has an impact on the optimal tax
design with respect to the externality. If interpreted naively, the optimal rule (4) itself hides

this fact.

12



4. Taxation

The current section adapts the interpretation of output being money. In this interpretation,
Y denotes gross income, w corresponds to the wage rate, and p¢, pp are producer prices.
A tax system 7 = (t¢,tp,T) consists of an income tax function 7" and specific commodity
taxes tc,tp € R. Consumer prices are g, := py + t for k € {C, D}. Consumption may be
subsidised through negative commodity taxes. 7" may be negative as well, in which case it
is a transfer to the agent.

For any type 0, let (Cyp(7), Dg(7), Yo(7)) be the maximisers of individual utility, given 7:

(Co(7), Do(7),Yp(T)) € argmax (u(C, D) — X — (yDr+ (1 —~)Dpg)e
(C,D,Y) We

s.t. qC+qpD <Y — T(-)). (7)

As before, households take D and Dy as given, so the externality is not relevant for their
decision.

When choosing a tax system, the social planner takes individual optimisation into account
and needs to respect the following fiscal budget constraint, which is equivalent to resource

constraint (1).

’}/(TL(T) + tcoL(T) + tDDL(T)) + (1 — ’}/) (TH(T> + tcCH(T) + tDDH(T)> Z T (8)

Here, T1,(7) and Ty (7) amount to the respective total income tax payments of low- and
high-type agents.

If (8) is satisfied for some tax system 7, then 7 is said to implement allocation A with
A = (Cp(7),Dp(1),YL(7),Cy(7), Dg(7),Yy(7)) as defined by (7). The set of available
tax systems to choose from depends on the informational constraints. When the social

planner can observe an agent’s type, the income tax may be contingent on the type. Under

13



asymmetric information it can only be contingent on observed gross income. In fact, with
T : (w,Y) — T(w,Y), it is possible to find a system 7 that implements the first-best
allocation. With 7" : Y — T(Y), it is possible to find a system 7 that implements the
second-best allocation. This insight allows to restrict attention to the chosen tax structure

albeit the linearity in commodity taxation.’

4.1. Normalisation

As usual in these type of models, there is a degree of freedom in the taxation choice. A
common way to deal with this is to normalise the tax system and often it is innocuous to
do so. Yet, when properties of the tax system, like a particular tax level, are the object of
interest rather than the real allocation, one has to be careful with normalisations.

This was a major issue in the double-dividend discussion between Bovenberg and de Mooij
(1994, 1997), Fullerton (1997) and others. The discussion centres on the comparison of the
second-best pollution tax and the first-best Pigouvian tax (the marginal social harm). The
actual tax level obviously depends on the chosen normalisation and a priori it is unclear
which normalisation is “correct”. In a related contribution, Schob (1997) focuses on the
normalisation choice and shows that also “the difference of the first-best and second-best
optimal tax on the polluting good depends on the normalization chosen” (p. 174) He con-
cludes that “such a comparison provides an inappropriate indicator for the existence of a
second dividend.” (ibid.)

To obtain valid results on comparative static properties of environmental taxation and
the relation between first- and second-best level, it is important to avoid the “normalization
trap” (Schob, 1997). Orosel and Schob (1996) propose to study an object called the second-

best internalization tax. Unlike an actual tax rate, it is a “real” variable, derived directly from

°The underlying arguments are standard. For a rigorous application to the current model see Aigner (2011,
Appendix B).
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the underlying allocation, and independent of the normalisation.'’ Using their concept, the
authors find a particular normalisation to be correct for doing the comparison of actual first-
vs. second-best tax rates.

The aforementioned contributions feature linear labour and commodity taxation, and do
not model distributive issues.!! Their insights on normalisations carry over to my model,
though. Here the “real” object of interest is the so called greenness g. For any tax system

T = (tc,tp,T), the greenness is defined by

dp
g:=tp—tc—.
dc

Similar to the second-best internalisation tax proposed by Orosel and Schob (1996), the
greenness is a real variable independent of the normalisation. More precisely, ¢ is unique
in the sense it is the same for any tax system which implements the second-best allocation.
The same is true with respect to the first-best allocation.

For an intuitive understanding of the greenness consider an agent who faces some tax sys-
tem 7 and decides to purchase an additional (marginal) unit of D, while keeping total spend-
ing constant. Then the greenness is the change in the agent’s total tax payment. Thereby
it quantifies the tax system’s inherent incentives to shift consumption from D to C. Plainly
put, it tells how “green” the system is. Notice that the a tax system could be green due to
high tp or due to low (potentially negative) . The greenness covers both cases.

It turns out that the greenness equals the tax rate ¢, on the dirty good iff the tax rate ¢
on the clean good is normalised to zero: precisely the normalisation identified as “correct”
by Orosel and Schob (1996) for the respective purpose. For this reason it is save to proceed

the analysis with ¢t = 0. For further reference, I call such a tax system normalised.

9The definition of the second-best internalisation tax uses the observation that private marginal utility should
equal social marginal welfare — a property of an allocation rather than a tax system.

The papers on the double dividend normally have identical/representative consumers. Distributional con-
cerns appear only indirectly as a motive for the unavailability of lump sum taxation.

15



For a detailed discussion of the greenness and the respective proofs see Aigner (2011).

5. The optimal Pigouvian tax

Given tc = 0, how high should ¢ be? An optimum is characterised by the fact that a mar-
ginal reallocation does not change welfare. In particular, keeping private spending constant,
a marginal change in consumption levels must not change welfare. Consider a marginal
shift from C to D (for all agents, taking account of differences in prices). This has three ef-
fects: (1) Consumption utility u is unchanged as agents are at their individual optimum. (2)
External harm increases at rate e. (3) Tax revenues increase at rate ¢ and relax the budget
constraint of the social planner. Multiplier A tells how welfare is affected from relaxing the
public budget. Thus the marginal effect of tax revenues on welfare amounts to tpA. The

overall marginal change in welfare is —e + tp\. For this change to be zero, ¢, needs to be

to = 3. 9)

5.1. The comparative statics of Pigouvian taxation

The following Propositions essentially combine equation (9) with the findings from Section
3.2. They state the main result of the paper: comparative static properties of those tax

systems that implement the first- and second-best allocation, respectively.

Proposition 1 (First-best Pigouvian taxation). If a normalised tax system 77" = (0,5, TT)

implements the first-best allocation A*', then

16



Furthermore,

oty oty

— >0, —= < 0.
e’ 0y

Despite the lack of distortions, distributive concerns influence the environmental tax;
more redistribution calls for a higher first-best Pigouvian tax t£. The relation reverses com-

pletely if first-best instruments are not available and the labour market is distorted.

Proposition 2 (Second-best Pigouvian taxation). If a normalised tax system 7* = (0,t},, T*)

implements an interior second-best allocation A*, then

Furthermore,

ot ot
2D < 0 -“D

= 0.
O ’ oy

In a nutshell, higher labour market distortions coming from increased redistribution im-
ply a lower optimal Pigouvian tax level. To develop a detailed intuition for the results,
decompose the comparative statics into two aspects. (1) In first- as well as in second-best ¢,
is inversely proportional to A. (2) The reaction of A differs for first- and second-best. The
first aspect is not new. It is already well established for models of linear labour/commodity
taxation. As shown, it carries over to a world with incentive constraints. The second aspect

has not drawn that much of attention in the literature but is crucial as it drives the reversed

results. I discuss the two aspects in turn.
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5.1.1. The inverse relation of environmental taxes and the cost of public funds

To grasp the intuition behind the inverse relation, consider the purpose of Pigouvian taxa-
tion: its (only) goal is to restore the efficient level of dirty-good consumption. From a welfare
perspective, a unit of the dirty-good should be consumed if and only if consumption is not
only individually optimal, but private benefits also outweigh social harm. Consequently,
dirty-good consumption is at its socially optimal level only if marginal private (net) benefits
exactly equal marginal social harm. To measure and compare these two objects, it is useful
to quantify them in terms of money.

(1) The optimising agent is willing to pay ¢p units of additional taxes for the right to
consume her last unit of D rather than spending the respective money on C'. So tp is a good
measure of (net) private benefits of the marginal unit of dirty-good consumption.

(2) Now consider the social planner. If D increases by one unit, welfare decreases by e.
If SP receives exactly e/\ units of money to relax the budget constraint, welfare increases
by (e/A)\ = e. Thus the marginal social harm measured in money is equal to e/\. It is
the exact amount of money that society needs as a compensation for additional dirty-good
consumption. The amount is lower if the received money is more useful in the sense that
the cost of public funds is higher. Putting together (1) and (2) shows that if {, = e/, then
individual maximisation leads to an allocation in which, at the margin, private (net) benefits
equal social harm.

A more naive view, which evaluates Pigouvian taxes in a partial or isolated manner rather
than viewing it as part of a whole tax system, could reason that 'Pigouvian taxes do two
things: reduce pollution and create revenue. So they should be high if pollution is severe or
if revenues are very valuable to the state! Naive intuition would thus suggest that higher
cost of public funds (associated with marginal tax revenue being more valuable) should
lead to higher Pigouvian tax rates. In fact, this ‘rationale’ would provide a straightforward

argument for the double dividend hypothesis, which by now has been mostly falsified (e.g.,
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Fullerton and Metcalf, 1998). The strong form of the double-dividend hypothesis states that
a revenue-neutral introduction of green taxes is desirable even if environmental benefits
are not taken into account (Goulder, 1995). In the model that I propose this fails clearly:
Pigouvian taxation, namely ¢, > 0, is optimal only if an externality is present, i.e., if e > 0.
Among others, Bovenberg (1999) gives the same argument, albeit for a model with linear
taxation. Empirical investigations by Goulder (1995) tend to reject the hypothesis as well.

The intuition that rejects the double dividend hypothesis is also central to the comparat-
ive static analysis. The more valuable the marginal tax revenues, the less is needed to com-
pensate for the marginal externality, and — because the one and only purpose of Pigouvian
taxation is to induce alignment of private benefits and social harm at the margin — a lower
Pigouvian tax rate is asked for. Various authors have noticed the underlying rationale in
their respective settings, so it applies quite universally (e.g., Schob, 1997). As Bovenberg and
de Mooij (1994) put it, “each unit of pollution does not have to yield as much public revenue
to offset the environmental damage if this revenue becomes more valuable” (p. 361).

In a recent contribution, Jacobs and de Mooij (2011) make the seemingly contradictory
statement that the optimal second-best environmental tax is not sensitive to the cost of
public funds at all. Their conclusion follows from a their newly proposed definition of
the cost of public funds. So the difference in conclusion is one of interpretations rather
than formal results. Their interpretation suggests that tax distortions do not play a role
for optimal environmental taxes, which clearly is at odds with my analysis. Indeed, Jacobs
and de Mooij (2011, p. 13) qualify their interpretation themselves: "The optimal second-best
environmental tax does require a correction for distributional concerns and interactions with
labor supply, but not for pre-existing tax distortions." The comparative statics results fill the
gap of specifying the “correction for distributional concerns” but also broaden the existing
insights by highlighting that even without distortions, distribution concerns influence the

optimal environmental tax level.
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I should highlight that the preceding discussion is about marginal rather than total reven-
ues. The difference is crucial: total revenues from Pigouvian taxation do not compensate for
the overall external harm. Although the two figures coincide in the linear specification, they
generally differ. More to the point, Pigouvian revenues should not be used to compensate
the harmed people; it is not its purpose, and it might reduce incentives to avoid exposure to

an externality in the first place (Oates, 1995).

5.1.2. How the cost of public funds changes in parameters

The changes of t£) and ¢3, with respect to welfare weight o have different signs. This point is
worth stressing again as previous contributions with non-linear income taxes tend to high-
light the similarities rather than the differences of first- and second-best Pigouvian taxes.
This focus comes naturally when examining the optimal rules, which are — almost - identical
for first- and second-best.

For the version of their model that resembles the one of this paper, Cremer et al. (1998)
conclude that “the optimal tax on the externality generating good is strictly Pigouvian” (p.
345; Proposition 1), where the term "Pigouvian’ is based on the first-best tax on the dirty good
(Definition 1). Likewise Gauthier and Laroque (2009) show that first-best rules quite often
hold also at second-best allocations if utility is separable. With respect to externalities they
find that “a non-satiated second best allocation can be supported with a first best Pigovian
tax” (Remark 4).'* Kopczuk (2003) and Kaplow (2012) make similar observations.

While all of these findings are correct, they suggest (quite explicitly in some cases) that
distortions are not that relevant for the second-best tax. Proposition 2 highlights the oppos-
ite. Also, these results might distract from the considerable differences between first- and

second-best when it comes to tax levels rather than tax rules. In fact, the optimal rule for

2Gauthier and Laroque (2009) do point out, though, that the whole second-best problem must be solved to
obtain the actual Pigouvian tax.
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the model at hand is given in (4) — for both first- and second-best. Only an inspection of the

respective multipliers reveals the differences between them.

First-best multiplier Recall that only high types work at a first-best allocation and that A\’ is
derived from an output increase of high-types. Now, if «v increases, SP cares less about high-
type agents working more, thus the cost of public fund decrease. Tax revenues generated
by tp are less valuable per unit so more (marginal) revenues need to be collected at the
optimum. If v is increased, the generic high-type has to work more for an higher overall
output requirement and the cost of public funds increases. Marginal revenues generated by

tp now have higher value per unit and less is needed to satisfy optimality condition (9).

Second-best multiplier From (5) the cost of public funds at a second-best allocation is \* =
a/wr, + (1 — a)/wy. As A* does not depend on ~, neither does ¢7,. The higher the welfare
weight of low-type agents, the more redistribution is asked for and the more distortions are
accepted. Higher distortions imply higher excess burden of taxation and thereby higher cost
of public funds. Marginal revenues from Pigouvian taxation are then more valuable and less

marginal revenue is needed to satisfy optimality condition (9).

First- vs. second-best As argued, the different directions of change of the Pigouvian tax with
respect to the welfare weight derive from the different reactions of the cost of public funds.
In the one case, the social planer cares less about those who work, i.e., environmental rev-
enues decrease in value, in the other case, income tax distortion increase and environmental

revenues increase in value.

Distribution and taxes To sum up, this section highlights a link between Pigouvian taxa-
tion and the degree of redistribution as measured by welfare weight ov. Welfare optimising
societies with different opinions about equity need to have different levels of Pigouvian tax-

ation, even if first-best instruments are feasible. This is not entirely obvious because in basic
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partial equilibrium models, the level of Pigouvian taxation is typically pinned down solely
by Pareto efficiency. Asymmetric information proofs to be a crucial determinant of the link
between environmental taxation and redistribution: the sign of the dependence changes

when going form first- to second-best.

Corner solutions

So far, the second-best comparative statics assumed an interior solution. Corollary 2 in
Appendix C shows that for corner solution dtp/0a = 0. In fact, if Y;* = 0 for some «,
then a further increase in o cannot change the optimal allocation at all: it is neither possible
to decrease Y, nor to increase low-type agents’ consumption without violating incentive

constraints. Consequently, the optimal tax remains constant as well.'®

5.2. First- vs second-best Pigouvian tax level

Bovenberg and de Mooij (1994) examine the double dividend hypothesis by comparing first-
and second-best environmental tax. Their contribution led to quite some follow-up pa-
pers on the subject. The workhorse model of this literature is a representative household
model with linear income and commodity taxes (e.g., Bovenberg, 1999). Lump sum taxes
are allowed or disallowed for exogenous reasons. In these settings, the second-best envir-
onmental tax falls short of the first-best one.!* The result carries over to my setting with

incentive-constraint redistribution.

Proposition 3. Fix parameters and consider two normalised tax systems, T° and 7*, which

implement the first- and second-best allocations, respectively. Then

* F

3The result is shown to hold for a > ~. I expect it to hold for a broader range of parameters, though.
4See also Schob (2005). As detailed in Section 4.1 and the references mentioned there, the comparison hinges
on the “correct” normalisation choice, which by now is well-understood (Orosel and Schob, 1996).
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Proof. (6) and (5) imply \* — A" > 0 due to Assumption 1. t}, < t£ follows from (9) . ]

Following the discussion of the comparative statics, the intuition for the result should
be clear. The second-best tax system distorts the labour market which increases the cost
of public funds compared to a first-best system. The difference in the cost of public funds

causes the difference in the tax levels.

5.3. The role of regressivity

Environmental taxes are regressive if total tax payments in proportion to total consumption
spending decrease in income levels. If so, these taxes impose a disproportionate burden
on low-income households. Energy-intensive goods like electricity and heating are often
considered to feature regressive consumption pattern, so taxes on these goods might indeed
be regressive. The Economist (2008), for instance, is concerned about this possibility in the
article I cited in the Introduction. The presumption also gave rise to applied studies on the
impact of green tax reforms on low-income households like Metcalf (1999), West (2005) or
Ekins and Dresner (2004). In a recent empirical study focusing on the European Union,
Kosonen (2012) finds that electricity and heating tend to be regressive. For transport fuel
and vehicles it is the other way around, though; they seem to be progressive. Also, there
are considerable differences between countries. Overall, the actual evidence for regressive
spending patterns is quite mixed.

The analysis in this paper contributes to these considerations by showing that the ques-
tion of regressivity might not be that important after all. By choosing consumption utility wu,
one could easily induce regressive as well as progressive consumption patterns for the dirty
good. Yet, none of this would have any influence on the optimal level of the environmental
tax. The income tax/transfer system might adapt but not so the optimal incentive to reduce

pollution.
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To be concrete consider a normalised second-best tax system. Now change the underlying
sub-utility u in a way to make dirty good spending patterns more/less regressive. How does
the optimal tax system change? First, £, does not change. The income tax 7" generally does
change, though. If marginal income taxes changed, the incentive to pollute would change
despite constant ¢ . An analysis of the optimal allocation shows, however, that this is not the
case; the distortions induced by redistribution do not hinge on the particularities of u (see
Appendix A, Proposition 5). So, the optimal response to a “sudden regressivity” requires no
action with respect to the environmental tax level. It could trigger a higher transfer amount
to support the poor, though.

Admittedly, this neutrality observation would be diluted without the linearity and separ-
ability assumptions. However, regressivity apparently is not relevant for the Pigouvian tax
per se — otherwise this should appear in the model presented here, which allows for a pure

regressivity effect.

6. Conclusion

This paper looks at the interdependence of distributive and environmental policies from a
normative perspective. It reveals a qualitative difference between first- and second-best.
Distributive goals and environmental policies are linked by the cost of public funds. On
the one hand they influence the optimal environmental tax level, on the other hand they
are a function of distribution policies. I find that if society wants more redistribution, the
second-best environmental tax is lower, whereas the first-best environmental tax is higher.

The results also clarify some aspects of the literature on Pigouvian taxation. First, it is
important to distinguish optimal rules from optimal levels. Former contributions on second-
best environmental taxation with non-linear income taxes tend to focus on the optimal tax

rule and point out their “first best flavor”", emphasising the similarity of first- and second-

5Gauthier and Laroque (2009, p. 1168)
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best with respect to environmental taxes. My focus on tax level shows significant differences
in the level and the parameter dependence. Income tax distortions do play a substantial role
for optimal environmental taxes.

Second, insights gained from models with linear income/commodity taxation carry over
to settings with non-linear income taxation and incentive constraints. This holds true for
the role of distortions as well as the result that the second-best environmental tax falls short
of the first-best one.

What can be learned in terms of policy implications? First, the view that the two goals
of redistribution and environmental protection can be addressed independently by means
of two different instruments (income tax and Pigouvian taxation) needs to be reconsidered.
In particular, the designer of environmental taxes has to account for the value in terms of
welfare that is created by the tax revenues. This value is a function of the income tax sched-
ule and depends on the set of available instruments as well as on informational constraints.
The optimal tax level then derives from the trade off between external harm and useful tax
revenues. Importantly, it is the marginal effect that counts. Total revenues are irrelevant
for the optimal level of Pigouvian taxation. So are the total environmental taxes paid by the
households.

Second, the intricate empirical question of regressivity is not too relevant for tax design-
ers. In fact, whether or not environmental taxes are regressive should not influence their
level. In particular, tax rates should not be reduced for poor households in an attempt to
compensate for any disproportionate burden from environmental taxes. This would reduce
incentives and provide an inefficient means of redistribution. Instead, one might raise the

transfers to those households.
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APPENDIX

A. First- and Second-Best Allocation

Lemma 1. If A" is a first-best allocation under Assumption 1, then Y/" = 0 and Y > 0.

Proof. Suppose Y/ > 0. If the total output of all low-type agents is lowered by A &
(0,7Y]), every low-type individual may reduce his own output by A /. The immediate
welfare gain is aA/(ywy). To finance the output reduction high types have to increase
their total output by A, resp. their individual output by A/(1 — 7). The immediate wel-
fare loss is (1 — a)A/((1 — v)wy). The net effect of the alteration is strictly positive given
Assumption 1, a contradiction.

Hence Y/" = 0. Y}/ > 0 needs to holds given the Inada-conditions on u. O
Lemma 2. If A is a second-best allocation, then
1. At most one incentive compatibility constraint is binding.
2. Yy > Y, andu > ur.

Proof. 1. Suppose the contrary. Summation of both ICs yields Y, = Yy and w(Cp, Dy) =
u(Cy, Dg). Due to the shape of u, this can be optimal only if (Cy, Dy) = (Cy, Dg).
To complete the argument, it suffices to show that such a bunching allocation is domin-
ated by a constrained laissez-faire allocation. Fix any feasible bunching allocation A® =
(C*, D¥,Y?, C® Db Y?) and define for any type 6, (C)/, Y}/) := argmax cy{u(C, D) —
Y/wp st. Y > peC + ppDP + r}. Then, in particular, u(CY, D) — Y Jwy > u(C?, D) —
Y /w,. Furthermore, maximisers are unique and (CY/, Y}/) # (CY Y}/, Thus there ex-
ist # such that u(C}/, D*) — Y Jwy > u(C? D’) — Y®/wy. The constraint laissez-faire

allocation A" thereby Pareto-dominates the bunching allocation A”. AY is also incentive
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compatible and feasible. Hence, A? cannot be a solution to the second-best problem and the
contradiction is completed. (The argument builds on Bierbrauer and Boyer, 2010, Lemma 1)
2. Add both ICs to obtain Yy > Y7. Equality would imply a bunching allocation which is

not optimal as shown above. Hence Yy; > Y;. ICy then implies uff > ul. O

Lemma 3. If A* is an interior second-best allocation under Assumption 1, then high types’

incentive constraint (3) is binding, low types’ incentive constraint (2) is slack.

Proof. Suppose by contradiction that (3) was slack, i.e., u! — Yy /wy > u* — Y, /wg. Then
there exits an € > 0 such that also ugy — (Yg + ¢€)/wy > up — (Yo — (1 — ) /7)/wn.
The e-perturbed allocation is constructed in a way to keep total output constant. Incentive

compatibility is sustained, too. The welfare effect of the perturbation is

1— 1— 1—
dW =« 76—( a>€>0<:> a > ( @)
ywr, wy ywr (1 —7y)wn

dW is strictly positive precisely under Assumption 1, hence a contradiction.

If ICy is binding then IC;, must be slack by Lemma 2. [

First-order conditions

Considering the lemmas, an appropriate Lagrangian for an optimal allocation is

L=au(Cr,Dr) —Yr/wy — (YDr + (1 =) Dp)e]
+ (1 —a) [u(Cx, Dy) = Yu/wr — (yDp + (1 —7)Dp)e]
+ Ay(Ye = pcCL = ppDr) + (1 = 7)(Yu — pcCr — ppDp) — 1) (10)
+1(u(Cr, Dur) = Y /wn — w(Cr, D) + Y1/ wh)

+0Y.
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Next, set the partial derivatives to zero.

augé — Y Ape — pue = 0 < (a — plug = AMype (11)
auky — yApp — puly —ve = 0 & (a — p)ub = Mypp + e (12)
—a/w, + YA+ p/wg +0 =0 Y\ = a/wy, — p/wg — 0 (13)

(1= a)ug = (L=y)Ape + pug =0 (1 —a+pug = (1 =7)pe  (14)
(1—a)ull — (1 =) Ipp +pul —(1—=y)e=0< (1 —a+ pul = (1 —~)(\pp + €15)

~(1=a)/wy + (1 =M= p/wg =0 (1 —a+p)/wyg =(1-7)A  (16)

It follows that

(U500 o
wr, wy
o 1 -«

For a first-best allocation, set ;1 = 0, for an interior second-best allocation, set o = 0.

Proposition 4 (First-best allocation). Given Assumption 1, allocation AY is a first-best alloc-

ation if and only if it satisfies the following system of equations.

uL:p_cl—a ol uL:pD+e/)\F1—a ol
“wp a1y b WH a 1—7’
)\F
ug:i_il’ Ug:pD;:fI/ )
,
Y =0, Y= ﬁ (pcCL +ppDT) +pcCh + ppDf + T
/\le——a‘
wy (1 —7)
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Proof. With 1 = 0, the Lagrange function (10) is concave and the first order conditions are

necessary and sufficient for a solution. Consider conditions (13) and (16) with ¢ = 0. Then

1 —
=Y s o0=YS =0

N T
wy(l—7) wy,

Notice that the inequality is satisfied if and only if Assumption 1 holds. The statement of
the Proposition now follows from conditions (11), (12), (14), (15), and the binding resource

constraint (1). O]

Low-type agents do not work at all. Due to linear disutility from working, Assumption 1
implies that any given amount of output requirement fosters lower aggregated disutility if
it is provided solely by high types rather than low types. If Y}, could be negative, welfare
would be unbounded.

For a moment, ignore the Lagrangian multiplier of the resource constraint A". Then con-
sumption of high types is independent of the welfare weight and the population shares, and
is just determined by efficiency considerations. It departs from standard results only through
a corrective element that takes care of the external effects of dirty-good consumption. The
consumption levels of the low-type agents, though, heavily depend on welfare weights as
well as the population shares. The underlying trade-off lies between consumption utility
of low-types and disutility of high types, who have to work for the provision of low-type
consumption. Low-type productivity wy, is irrelevant for the allocation given that they do

not work.

Lemma 4. Let u(C, D) be strictly concave and continuously differentiable and let k¢, k" be
two constants such that the system uc(C, D) = k. up(C, D) = kP has a solution. Then the

solution is unique.

Proof. Consider the three-dimensional space. Let s = (57, s”) be a solution. The tangential

plane at S = (s¢, s”, u(s)) is spanned by the directions of the two partial derivatives at S.
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As u is strictly concave, the whole range of u — except u(s) — lies below that plane. Now
consider a point s’ that also solves the above system but is different from s. The tangential
plane at s is parallel to the one at s, yet one of the planes is higher than the other. But than
it is no longer possible that the whole range of u lies below the lower plane. This creates a

contradiction. ]

Proposition 5 (Interior second-best allocation). If A* is an interior second-best allocation

under Assumption 1, then it is unique and solves the following system of equations with d =

it (1= wy fwg) (@ — ).

)\*
ub =221+ a) ug:M(1+d)
wr wr,
o __ Pc w_ Ppte/\
uC—wH uD——wH

Y} =r+7y(pcCi +ppD;) + (1 =) (pcCh + ppDiy) — wir(u” —u") (1 —7)

Vi =r+7v(pcCi +ppD;) + (1 = ) (pcCi + pp D) + w(u — u*)y
1 _
V=g 0 pr=all-) 2 (1-a) (19)
wy, (10, wr,

Proof. If A* is an interior second-best allocation, then it satisfies conditions (13) and (16)
with ¢ set to zero. Then \* and p* are uniquely determined and strictly positive. For given
values of \* and p*, (11), (14), (12), and (15) uniquely determine the consumption levels
(uniqueness is established by Lemma 4). Output requirements follow from the binding re-

source constraint (1) combined with the binding incentive constraint (3). O]

The conditions for high-type consumption levels are almost identical to the corresponding

first-best conditions (18). The subtle but important difference lies in the Lagrangian multi-
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plier A\, which is different in first- and second-best and, most importantly, features different
comparative statics properties.

The consumption levels of low types are distorted downwards, i.e., the labour choice is
distorted in favour of leisure. The distortion is captured by d and is higher if ;1* is higher or

the difference in productivities is larger.

B. Proofs of the main results

Proof of Proposition 1. Combining ¢~ = 0 with Proposition 4 and the fact that

gp _ pp+ip
qc tc

= MRS

yields MRS = pp/pc + ¢/(MN'pc) = (pp + tp)/pc < tp = e/A\. From (6), \' =

(1 —a)/(wy(1 —+)). The comparative statics immediatly follow. O

Proof of Proposition 2. Combining tc = 0 with Proposition 5 and the fact that

4o _ Pp +1ip
qc tc

= MRS

yields MRS = pp/pc + ¢/(Npc) = (pp + tp)/pc < tp = e/A*. From (19), \* =

a/wr, + (1 — a)/wy). The comparative statics immediatly follow. O

C. Second-Best Corner Solutions

A second-best corner solution is a second-best allocation with Y;, = 0. In this section I show
that for some parameters this is the relevant case. I then claim that a corner solution does
not change at all if « is increased (Proposition 6). Thereby I extend the comparative statics

properties of Pigouvian taxation to instances of corner solutions (Corollary 2). Proposition
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6 builds on a conjecture that generalises Lemma 3. Unfortunately, I can only partially verify

that conjecture (Lemma 7).

Lemma 5. If A is a second-best allocation and

(20)

then A is a corner solution, i.e. Y7, = 0.

Proof. By contradiction, assume A is an interior solution. Then it satisfies conditions (11) to
(16) with 6 = 0. Hence p = (1 — y)awy /wr, — v(1 — a) by (17). But then the condition on

parameters stated in the Lemma implies a — p < 0. This, however, contradicts (11). O]

Remark 1. Bierbrauer and Boyer (2010) exclude corner solutions in their comparative stat-
ics analysis by assuming 1 > (1 — y)wgy/wy. Their inequality always holds if (20) is not
satisfied, but the converse is not true. Hence, I do not expect (20) to be a necessary condition

for a corner solution.
To proceed, let me introduce some convenient notation.

Definition 1. Define A(«) to be a second-best allocation, in which the welfare weight is
given by « and all other parameters are fixed. For o/ < " and 6 € {L, H} define U} :=

Up(A()), U = Up(A(a”)), and dU, := UY — UL,

Quite intuitively, if the taste for redistribution increases, low-type agents receive higher
utility. At the same time, high-type agents have to receive lower utility because someone
has to pay for the increase in Uy. The following lemma formalises this intuition. Notice that

also a zero-change in utility is possible.

Lemma 6. If « increases from o/ to o, then

dUp, > 0> dUp.
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Proof. From Definition 1 it follows, in particular,

AU+ (1= )V Uy > Ul +(1—a) U =0>ddU,+ (1 —a')dUy (21)

AU+ (1 —a" U > a"Up + (1 —a"\Uy = o"dUp, + (1 —a")dUyg >0 (22)

Summing up (21) and (22) yields dU;, > dUy. Next, suppose by contradiction that dUy > 0,

then dUy, > 0, but that contradicts (21). It follows similarly that dU; > 0. O

Lemma 3 shows that the incentive constraint of high-type agents binds at interior second-
best allocations, given Assumption 1. Its proof does not work for corner solutions, though.
By contrast, the following lemma does hold for corner solutions, albeit under more restrict-

ive conditions on parameters.

Lemma 7. Suppose o > ~y. If A is a second-best allocation, then the incentive constraint (3)

for the high-type agents is binding at A.

Proof. 1 first show that marginal utility is lower for high- than for low-type agents. Then
I show that a marginal redistribution of C' from high- to low-type agents increases welfare
and hence needs to be ruled out by a binding incentive constraint. Otherwise the allocation
cannot be second-best. In term of notation, recall that v’ = u(Cy, Dj).

Claim: uc(Cp, Dy) > uc(Cy, Dy)

Case 1, Dy < Dy: then Cy > (1, because, by Lemma 2, u(Cy, D) < u(Cy, Dy). De-
creasing marginal utility and a positive cross derivative ucp > 0 then imply uc(Cr, D) >
uc(Cy, Dr) > uc(Cy, Dy ), hence the claim holds.

Case 2A, Dy > Dy, Cy < Cp: then, similar to Case 1, up(Cp, Dy) > up(Cp, Dy) >
up(Cy, D). At an optimal allocation, uf, /ul = vl /ul, hence uk, > uf implies ul > ul,

as claimed.
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Case 2B, Dy > Dy, Cy > Cp: as u is strictly concave,

u —u' < (Cy — Cp)ug + (Dy — Dy )up, and

UL — UH < (OL — CH)Ug + (DL — DH)ug
need to hold.!® Rearranging the second inequality gives, in combination with the first,
ug(DH — DL) -+ ug(CH — CL) < uH — UL < (CH — C[)Ué + (CH — CL)U%

(Cy — CL),(Dy — D) > 0, thus u¥ < ufy or uZ < wl. If one of these two inequalities
holds, the other one must hold as well, otherwise u% /ul = uf /ull cannot be true. This
completes the proof of the claim.

Now, suppose that the lemma is false, then u(Cy, D) — Yy /wy > w(Cr, D) =Y, /wy at
a second-best allocation. Then there exist dCy, dC, withdDy = —dCrv/(1—7) < 0, such
that the incentive constraint still holds, i.e. that u(Cy + dCy, Dy) — Yy /wyg > u(Cp +
dCr, D) — Y /wy. The modified allocation (Cf, + dCr, Dy, Y., Cy + dCy, Dy, Yg) is
also feasible by construction (and still satisfies low-type agents’ incentive constraint). For

dDj — 0, the change in welfare is approximately
AW =~ auidCr — (1 — a)uddCry/(1 —v) = dCp (a(l = y)ué — (1 — a)yud) . (23)

If o > v, and ul > ul as claimed, then (1 —7)u& — (1 —a)yuf > 0 and welfare increases.

Hence, a contradiction. O]

If the welfare function is utilitarian (&« = <) or exhibits an even stronger tendency to

redistribute in favour of the low-type agents, high-type agents incentive constraint must

%In general, if a continuously differentiable function f is strictly concave over an open, convex subset of
R™, then f(z) — f(2%) < 3, fo: (2%)(z; — 2¥), for all x, 2° from that subset. See Sydsaeter et al. (2008,
Theorem 2.4.1) for a textbook reference.
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be binding. This is not a necessary condition, though. Equation (23) shows that even with
« < 7 a slack incentive constraint would be impossible, provided that u% is sufficiently
greater than uf. In fact, I believe that the constraint is binding whenever Assumption 1 is

satisfied.

Conjecture 1. If A is a second-best allocation under Assumption 1, then high types’ incentive

constraint is binding at A.

The following proposition is the main result of the current section. If conjecture 1 holds,

the proposition and its two corollaries extend to all parameters satisfying Assumption 1.

Proposition 6. Suppose o/ > . Let A() be a second-best corner solution. Then A(a") =

A(d) foralld” > o'

Proof. Claim 1: At a corner solution all agents have the same utility level.
By Lemma 7, high-type agents incentive constraint is binding. Adding —(yDy+(1—v)Dpg)e
to the binding incentive constraint gives Uy (A(a/)) = w(Cy, Dy) — Yy /wy — (D + (1 —
V)Du)e =u(Cr, Dr) — (vDr + (1 = v)Dp)e = UL (A()).

Claim 2: U, (A(0")) = Ug(A(")).
From Lemma 6, U (A(a")) — UL(A(d')) > Un(A(a”)) — U (A(a')). Given Claim 1 this
reduces to UL (A(a)) > Ug(A(a")). The incentive constraint of high types implies, though,
that Uy (A(a”)) > UL(A(a”)). Hence U (A(a”)) = Ug(A(a”)).

Claim 3: A(") = A(d).
Suppose the opposite, then U (A(a")) > UL (A(a/)) by Lemma 6 and the fact that solutions
are unique (if they exist). But then Claims 1 and 2 imply that also Uy (A(a”)) > Ux(A(d)).

This contradicts Lemma 6. ]

Increasing the welfare weight of low-type agents does not change the allocation if low-
type agents already provide zero output. The only way to increase their utility is to increase

their consumption. But then high-types incentive constraint can no longer be satisfied.
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Thus the limits of redistribution (under information constraint) are met, once all output is

produced by high-type agents:

Corollary 1. Suppose o’ > . Let A(«') be a second-best corner solution. Then the Rawlsian
allocation A® = lim,_,; A(«) is equal to A(’). Also, the second-best Pareto-frontier has a

kink at [Up(AR), Ug(A®)] ifo/ < 1.

Notice that it is possible that the Rawlsian allocation is not a corner solution. Put differ-
ently, (second-best) redistribution can hit its very limit well before low-type agents provide
zero output.

Yet, if for some o < 1, low-type agents’ output does equal zero, then, consequently, the

comparative statics of Pigouvian taxation are also zero:

Corollary 2. Suppose o« > ~y. Let A(«) be a second best allocation with Yy, = 0. Let t p(«) be
the dirty good tax of a normalised tax system that implements A(«). Thentp(o/) = tp(«a) for

all o’ > «.
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