Appendix II

Random effects regression model (1)

$$\sum_{\{A,B,AB\}} CS_{ij} = \beta_F F + \beta_B B + \beta_{FB} F \times B + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}}$ CS_{ij} represents the total consumer surplus extracted in the A and B markets in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, $Fringe\ (F)$, $Bundle\ (B)$, and $LowFixedCost\ (LFC)$. β_{FB} is the coefficient for the

interaction term (F *B). μ_i and ϵ_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and $N(0,\sigma_{\epsilon})$.

. xi: xtreg pcsab i.F*B LFC if exclusion!=1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session				Number of obs = 3750 Number of groups = 25			
R-sq: within = 0.0000 between = 0.4740 overall = 0.2945				Obs per group: min = 150 avg = 150.0 max = 150			
Random effects $u_i \sim Gaussian$ $corr(u_i, X) = 0$ (assumed)				Wald chi2(4) = 18.03 Prob > chi2 = 0.0012			
pcsab	Coef.	Std. Err.	Z	P>z	[95% Conf. Ir	nterval]	
F	.1223976	.0514955	2.38	0.017	.0214683	.2233269	
В	.0229242	.0514955	0.45	0.656	0780051	.1238535	
F*B	.0444726	.0728256	0.61	0.541	098263	.1872081	
LFC	1296805	.0514955	-2.52	0.012	2306098	0287512	
_cons	.5300408	.0364128	14.56	0.000	.458673	.6014086	
sigma_ sigma_ rho	_e .07866	5561	ance due to u_i)			

Random effects regression model (1)' with AR(1) disturbance

$$i = 1,...,10,61,...,70,71,...,75$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}}$ represents the total consumer surplus extracted in the A and B markets in the

ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F *B). μ_i and ϵ_{ij} are the session specific and observation specific random disturbances respectively. μ_i is assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and ϵ_{ij} is assumed to follow an AR(1) process.

. xi: xtregar pcsab i.F*B LFC if exclusion!=1 & only150==1, re rhotype(regress) lbi

	S regression w variable (i): ses	\ /	Number of obs = 3750 Number of groups = 25		
betwee	within $= 0.000$ en $= 0.4737$ = 0.2943	0	Obs per group: min = 150 avg = 150.0 max = 150		
Wald c	` /	23.23 assumed)		Prob > chi2 = 0.0003	
pcsab	Coef.	Std. Err.	Z	$P>_Z$	[95% Conf. Interval]
F	.1257982	.0455999	2.76	0.006	.0364241 .2151724
В	.0280024	.0455999	0.61	0.539	0613718 .1173765
F*B	.038356	.064488	0.59	0.552	0880381 .1647501
LFC	1315932	.0455999	-2.89	0.004	2209673042219
_cons	.5271283	.032244	16.35	0.000	.4639313 .5903254

rho_ar .84837665 (estimated autocorrelation coefficient)

sigma_u .06879162 sigma_e .04124926

rho_fov .73553664 (fraction of variance due to u_i)

theta .70260329

modified Bhargava et al. Durbin-Watson = .29381298

Baltagi-Wu LBI = .315383

Random effects regression model (2)

$$i = 1,...,10,61,...,70,71,...,75$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}}$ represents the total seller surplus extracted in the A and B markets in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F*B). μ_i and ϵ_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and $N(0,\sigma_{\epsilon})$.

. xi: xtreg ppsab i.F*B LFC if exclusion!=1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session				Number of obs = 3750 Number of groups = 25			
betwee	within = 0.000 en = 0.5401 1 = 0.3143	00	Obs per group: min = 150 avg = 150.0 max = 150				
Random effects $u_i \sim Gaussian$ $corr(u_i, X) = 0$ (assumed)				Wald chi2(4) = 23.49 Prob > chi2 = 0.0001			
ppsab	Coef.	Std. Err.	Z	$P>_Z$	[95% Conf. Interval]		
F	0783794	.0287151	-2.73	0.006	13465990220988		
В	003147	.0287151	-0.11	0.913	0594275 .0531336		
F*B	0116228	.0406093	-0.29	0.775	0912156 .0679699		
LFC	.1051634	.0287151	3.66	0.000	.0488829 .161444		
_cons .1696173 .0203046 8.35			8.35	0.000	.129821 .2094137		
sigma_ sigma_ rho	_e .05093	3113	ance due to u i				

Random effects regression model (2)' with AR(1) disturbance

$$\sum_{\{A,B,AB\}} PS_{ij} = \beta_F F + \beta_B B + \beta_{FB} F \times B + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}} \operatorname{PS}_{ij}$ represents the total seller surplus extracted in the A and B markets in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, $Fringe\ (F)$, $Bundle\ (B)$, and $LowFixedCost\ (LFC)$. β_{FB} is the coefficient for the interaction term (F * B). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively. μ_i is assumed to be independent and normally distributed, $N(0,\sigma_\mu)$ and ε_{ij} is assumed to follow an AR(1) process.

. xi: xtregar ppsab i.F*B LFC if exclusion!=1 & only150==1, re rhotype(regress) lbi

	LS regression w variable (i): ses	` '	Number of obs = 3750 Number of groups = 25				
betwee	within $= 0.000$ en $= 0.5401$ = 0.3142	Obs per group: min = 150 avg = 150.0 max = 150					
Wald chi2(5) = 29.04 corr(u_i, Xb) = 0 (assumed)					Prob > chi2 = 0.0000		
ppsab	Coef.	Std. Err.	Z	$P>_Z$	[95% Conf. Interval]		
F	0777832	.0255803	-3.04	0.002	12791970276467		
В	0038669	.0255803	-0.15	0.880	0540034 .0462696		
F*B	0108444	.036176	-0.30	0.764	0817481 .0600593		
LFC	.1044556	.0255803	4.08	0.000	.0543191 .1545921		
_cons .1696467 .018088 9.38 0.000					.1341948 .2050986		
rho_ar							

sigma_u .03862671
sigma_e .03098454
rho_fov .60847612 (fraction of variance due to u_i)
theta .70551371

modified Bhargava et al. Durbin-Watson = .40985308

Baltagi-Wu LBI = .42381293

Random effects regression model (3)

$$\sum_{\{A,B,AB\}} S_{ij} = \beta_F F + \beta_B B + \beta_{FB} F \times B + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}}$ represents the total system (consumer+seller) surplus extracted in the A and B markets in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F*B). μ_i and ϵ_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and $N(0,\sigma_{\epsilon})$.

. xi: xtreg welfareab i.F*B LFC if exclusion!=1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session				Number of obs = 3750 Number of groups = 25				
R-sq: within = 0.0000 between = 0.3499 overall = 0.2059				Obs per group: $min = 150$ avg = 150.0 max = 150				
Random effectorr(u_i, X)	ts u_i ~ Gaussi = 0 (assumed			chi2(4) = chi2 =	= 10.76 0.0294			
welfareab	Coef.	Std. Err.	Z	$P>_Z$	[95% Co	nf. Interval]		
F	.0440182	.0335394	1.31	0.189	-	7 .1097541		
В	.0197772	.0335394	0.59	0.555		7 .0855132		
F*B	.0328497	.0474318	0.69	0.489		9 .1258144		
LFC	0245171	.0335394	-0.73	0.465	090253	.0412189		
_cons	.6996581	.0237159	29.50	0.000	.6531758	.7461404		
sigma_u sigma_e rho	.052877 .04936402 .53431923 (f	fraction of varia	ance due	e to u_i)				

Random effects regression model (3)' with AR(1) disturbance

$$\sum_{\{A,B,AB\}} S_{ij} = \beta_F F + \beta_B B + \beta_{FB} F \times B + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}}$ represents the total system (consumer+seller) surplus extracted in the A and B markets in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F*B). μ_i and ϵ_{ij} are the session specific and observation specific random disturbances respectively. μ_i is assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and ϵ_{ij} is assumed to follow an AR(1) process.

. xi: xtregar welfareab i.F*B LFC if exclusion!=1 & only150==1, re rhotype(regress) lbi

RE GLS regression with AR(1) disturbances Group variable (i): session				Number of ob Number of gr		750 25	
R-sq: within = 0.0000 between = 0.3497 overall = 0.2057				Obs per group: min = 150 avg = 150.0 max = 150			
Wald chi2(5)	= 13.6	7					
corr(u_i, Xb)				Prob > chi2	= 0.01	78	
welfareab	Coef.	Std. Err.	Z	P>z	[95% Cont	f. Interval]	
F	.0460753		1.54		-	.1046826	
В	.0217345	.0299023		0.467		.0803419	
F*B	.0304308	.0422882	0.72	0.472		.1133141	
LFC	0259318	.0299023	-0.87	0.386	0845392	.0326755	
_cons	.6982701	.0211441	33.02	0.000	.6568284	.7397118	
rho ar	.72262601	(estimated auto	correlati	on coefficient)			
sigma u	.04621837	(
sigma e	.03390123						
rho fov	.65018493						
theta	.79236295	•		<u> </u>			
modified Bhargava et al. Durbin-Watson = .53872338							
Baltagi-Wu L	BI = .566135	584					

Poisson regression model (4)

$$\ln(\sum e_{ij}^{B}) = \beta_{F}F + \beta_{B}B + \beta_{FB}(F \times B) + \beta_{LFC}LFC + \alpha_{i} + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 $\sum e_{ij}^B$ represents the number of competitors that simultaneously exist in the B market in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F *B). α_i is the session specific constant term and ε_{ij} stands for the observation specific disturbances that is assumed to be independent and normally distributed, $N(0,\sigma_{\varepsilon})$.

. xi: poisson ecb i.F*B LFC if exclusion!=1 & only150==1, robust cluster(session)

Iteration 0: log pseudo-likelihood = -5439.4773 Iteration 1: log pseudo-likelihood = -5439.4773

Poisson regression Number of obs = 3750

Wald chi2(4) = 24.94

Log pseudo-likelihood = -5439.4773 Prob > chi2 = 0.0001

(standard errors adjusted for clustering on session)

Robust

ecb	Coef.	Std. Err.	Z	P>z	[95% Conf. Interval]
F	.1256736	.0849044	1.48	0.139	0407359 .2920831
В	0907947	.0670515	-1.35	0.176	2222133 .0406239
F*B	0442219	.1795225	-0.25	0.805	3960795 .3076357
LFC	.2253938	.1655375	1.36	0.173	0990538 .5498414
_cons	.7657779	.0582581	13.14	0.000	.6515941 .8799616

Random effects regression model (5)

$$p_{ij}^{A} = \beta_{F}F + \beta_{B}B + \beta_{FB}F \times B + \beta_{LFC}LFC + (\alpha + \mu_{i}) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 p_{ij}^A represents the transaction price in the A market in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F *B). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_\mu)$ and $N(0,\sigma_\varepsilon)$.

. xi: xtreg pat i.F*B LFC if exclusion!=1 & only150==1, re i(session)

m-effects GLS	regression	Number of obs $= 3406$					
Group variable (i): session				Number of groups = 25			
R-sq: within = 0.0000 between = 0.4548 overall = 0.3509				Obs per group: min = 48 avg = 136.2 max = 150			
m effects u i~	Gaussian		Wald chi2(4)	= 16.69			
_			Prob > chi2 = 0.0022				
_							
Coef.	Std. Err.	Z	$P>_{\mathbb{Z}}$	[95% Conf. Interval]			
-9.3541	4.398655	-2.13	0.033	-17.975317328943			
1.244901	4.399601	0.28	0.777	-7.378158 9.86796			
-5.732777	6.221324	-0.92	0.357	-17.92635 6.460795			
9.616412	4.400539	2.19	0.029	.991515 18.24131			
88.8	3.110319	28.55	0.000	82.70389 94.89611			
sigma u 6.9450724							
sigma e 4.5231468							
.70216921 (f	raction of varia	ance due	e to u_i)				
1	variable (i): se within = 0.000 en = 0.4548 l = 0.3509 m effects u_i ~ i, X) = 0 (a Coef. -9.3541 1.244901 -5.732777 9.616412 88.8 u 6.9450 e 4.5231	within = 0.0000 en = 0.4548 l = 0.3509 m effects u_i ~ Gaussian _i, X) = 0 (assumed) Coef. Std. Err. 9.3541	variable (i): session within = 0.0000 en = 0.4548 l = 0.3509 m effects u_i ~ Gaussian i, X) = 0 (assumed) Coef. Std. Err. Z -9.3541	variable (i): session Number of grown within = 0.0000 Obs per group en = 0.4548 avg = 136.2 l = 0.3509 max = 150 m effects u_i ~ Gaussian _i, X) = 0 (assumed) Wald chi2(4) Prob > chi2 Coef. Std. Err. Z P>z -9.3541 4.398655 -2.13 0.033 1.244901 4.399601 0.28 0.777 -5.732777 6.221324 -0.92 0.357 9.616412 4.400539 2.19 0.029 88.8 3.110319 28.55 0.000 u 6.9450724			

Random effects regression model (5)' with AR(1) disturbance

$$p_{ij}^{A} = \beta_{F}F + \beta_{B}B + \beta_{FB}F \times B + \beta_{LFC}LFC + (\alpha + \mu_{i}) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 p_{ij}^A represents the transaction price in the A market in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F*B). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively. μ_i is assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and ε_{ij} is assumed to follow an AR(1) process.

. xi: xtregar pat i.F*B LFC if exclusion!=1 & only150==1, re rhotype(regress) lbi

Group R-sq: v betwee	S regression variable (i) within = 0.4545 = 0.3483		Number of Number of Obs per g avg = 1 max =	of groups group: mii 136.2			
Wald chi2(5) = 21.24 corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0007 theta							
min	5%	media	ın	95%	m	nax	
0.7806	0.7	990 0.806	1	0.8061	0.	.8061	
pat	Coef.	Std. Err.	Z	$P>_Z$	[9	95% Conf	[Interval]
F	-9.477318	3.901793	-2.43	0.015	-1	7.12469	-1.829944
В	1.315253	3.902611	0.34	0.736	-6	5.333724	8.96423
F*B	-5.537509	5.518559	-1.00	0.316	-1	6.35369	5.278668
LFC	9.792445	3.905169	2.51	0.012	2.	138454	17.44644
_cons	88.8	2.758984	32.19	0.000	83	3.39249	94.20751
_cons 88.8							

Random effects regression model (6)

$$p_{ij}^{B} = \beta_{F}F + \beta_{B}B + \beta_{FB}F \times B + \beta_{LFC}LFC + (\alpha + \mu_{i}) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 p_{ij}^B represents the transaction price in the B market in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F *B). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_\mu)$ and $N(0,\sigma_\varepsilon)$.

. xi: xtreg pbt i.F*B LFC if exclusion!=1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session				Number of obs = 3728 Number of groups = 25			
betwee	within = 0.000 en = 0.1252 I = 0.0582	00	Obs per group: min = 134 avg = 149.1 max = 150				
	m effects $u_i \sim 0$ i, X = 0		Wald chi2(4) = 2.86 Prob > chi2 = 0.5814				
pbt	Coef.	Std. Err.	Z	$P>_Z$	[95% Conf	`Intervall	
F	-1.47868	2.485658	-0.59		-6.350481	_	
В	-1.069705	2.485676	-0.43		-5.94154		
F*B	1.797105	3.515336	0.51	0.609	-5.092828	8.687038	
LFC	-3.168705	2.485778	-1.27	0.202	-8.040741	1.70333	
_cons	31.60021	1.757626	17.98	0.000	28.15533	35.0451	
sigma_u 3.9166082							
sigma_e 3.9959881							
rho .48996892 (fraction of varia				ance due to u_i))		

Random effects regression model (6)' with AR(1) disturbance

$$p_{ij}^{B} = \beta_{F}F + \beta_{B}B + \beta_{FB}F \times B + \beta_{LFC}LFC + (\alpha + \mu_{i}) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 p_{ij}^B represents the transaction price in the B market in the ith session and jth period. β_F , β_B , and β_{LFC} are the coefficients for the treatment variables, Fringe(F), Bundle(B), and LowFixedCost(LFC). β_{FB} is the coefficient for the interaction term (F *B). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively. μ_i is assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and ε_{ij} is assumed to follow an AR(1) process.

. xi: xtregar pbt i.F*B LFC if exclusion!=1 & only150==1, re rhotype(regress) lbi

RE GLS regression with AR(1) disturbances Group variable (i): session R-sq: within = 0.0000 between = 0.1248 overall = 0.0582						Numb Obs pe	er of obs er of groups er group: m 149.1 150	s = 25	,
Wald	chi2(5)	=	3.95						
` -		•	assumed)			Prob >	chi2 =	0.5573	
					0.50/				
min		5%			95%		max		
0.6583	3	0.6613	0.6613	3	0.6613	j	0.6613		
pbt	Coef.		Std. Err.	Z	$P>_Z$		[95% Con	f. Interval]	
F	-1.5550	65	2.210907	-0.70	0.482		-5.888364	2.778234	4
В	-1.3010	8	2.210911	-0.59	0.556		-5.634386	3.032226	5
F*B	1.94178	36	3.126882	0.62	0.535		-4.18679	8.070362	
LFC	-3.2396	52	2.21117	-1.47	0.143		-7.573434	1.094195	5
_cons	31.8113	33	1.563348	20.35	0.000		28.74722	34.87543	
rho_ar .86872035 (estimated autocorrelation coefficient) sigma_u 3.2868797									
sigma	_e	1.9843	575						
rho_fo	V	.73288	06 (fraction of	of variar	nce due	to u_i)			
modifi	ied Bharg	gava et	al. Durbin-Wa	tson = .	.255555	55			

Baltagi-Wu LBI = .29695781

Random effects regression model (7)

$$p_{ij}^{AB} = \beta_F F + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1, ..., 10, 61, ..., 70, 71, ..., 75 \qquad j = 31, ..., 180.$$

 p_{ij}^{AB} represents the bundle transaction price in the ith session and jth period. β_F and β_{LFC} are the coefficients for the treatment variables, Fringe(F) and LowFixedCost(LFC). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and $N(0,\sigma_{\epsilon})$.

. xi: xtreg pbundlet F LFC if exclusion!=1 & only150==1, re i(session)

Random-effect Group variable	ets GLS regress e (i): session	sion	Number of obs = 2028 Number of groups = 15				
R-sq: within between = 0.4 overall = 0.29	631		Obs per group: $min = 52$ avg = 135.2 max = 150				
Random effects $u_i \sim Gaussian$ $corr(u_i, X) = 0$ (assumed)			Wald chi2(2) = 10.35 Prob > chi2 = 0.0056				
pbundlet	Coef.	Std. Err.	Z P>z	[95% Conf. Interval]			
F	-12.64868	4.637562	-2.73 0.006	-21.73814 -3.559229			
LFC	5326375	4.634957	-0.11 0.909	-9.616987 8.551712			
_cons	117.3337	3.280256	35.77 0.000	110.9045 123.7629			
sigma_u sigma_e rho	7.3047471 6.8797972 .52993179 (1	fraction of varia	unce due to u_i)				

Random effects regression model (7)' with AR(1) disturbance

$$p_{ij}^{AB} = \beta_F F + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 p_{ij}^{AB} represents the bundle transaction price in the ith session and jth period. β_F and β_{LFC} are the coefficients for the treatment variables, Fringe(F) and LowFixedCost(LFC). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively. μ_i is assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and ε_{ij} is assumed to follow an AR(1) process.

. xi: xtregar pbundlet F LFC if exclusion!=1 & only150==1, re rhotype(regress) lbi

	ξ ,				os = 2028 oups = 15
R-sq: within = 0.0000 between = 0.4629 overall = 0.2979			Obs per group avg = 135.3 max = 156	2	
Wald chi2(3) corr(u_i, Xb) theta	= 0 (assume	d)		Prob > chi2	= 0.0056
min		median	95%	max	
0.6205		0.6509	0.6509)
pbundlet	Coef.	Std. Err.		P>z	[95% Conf. Interval]
F	-12.53081	4.110996	-3.05	0.002	-20.58822 -4.47341
LFC	2248745	4.107196	-0.05	0.956	-8.27483 7.825081
_cons	117.1979	2.90871	40.29	0.000	111.497 122.8989
rho_ar	.8917204 (es	timated autoco	rrelatio	n coefficient)	
sigma_u	6.0746772				
sigma e	3.1618639				
	.78683202 (f	raction of varia	ance due	e to u i)	
	rgava et al. Dur			— /	
	BI = .30366622				

Random effects regression model (8)

$$CS_{ij}^{AB} = \beta_F F + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 CS_{ij}^{AB} represents the surplus that consumers extract from the bundle in the ith session and jth period. β_F and β_{LFC} are the coefficients for the treatment variables, Fringe(F) and LowFixedCost(LFC). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_u)$ and $N(0,\sigma_e)$.

. xi: xtreg pcsbundle F LFC if exclusion!=1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session				er of obs = er of groups =		
R-sq: within = 0.0000 between = 0.1557 overall = 0.1186			Obs per group: $min = 150$ avg = 150.0 max = 150			
Random effectorr(u_i, X)	_			chi2(2) = > chi2 = (4.06 0.1315	
pcsbundle	Coef.	Std. Err.	Z	$P>_Z$	[95% Conf	. Interval]
F	.0336146	.0885876	0.38	0.704	1400139	.207243
LFC	.1791379	.1084972	1.65	0.099	0335127	.3917885
_cons	.1673755	.0626409	2.67	0.008	.0446016	.2901494
sigma_u	.19787119					
sigma_e	.11344136					
rho	.75262478 ((fraction of varia	ance du	e to u_i)		

Random effects regression model (8)' with AR(1) disturbance

$$CS_{ij}^{AB} = \beta_F F + \beta_{LFC} LFC + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 1,...,10,61,...,70,71,...,75 \qquad j = 31,...,180.$$

 CS_{ij}^{AB} represents the surplus that consumers extract from the bundle in the ith session and jth period. β_F and β_{LFC} are the coefficients for the treatment variables, Fringe(F) and LowFixedCost(LFC). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively. μ_i is assumed to be independent and normally distributed, $N(0,\sigma_{\mu})$ and ε_{ij} is assumed to follow an AR(1) process.

. xi: xtregar pcsbundle F LFC if exclusion!=1 & only150==1, re rhotype(regress) lbi

RE GLS regression with AR(1) disturbances Group variable (i): session				Number of ob Number of gr		750 25
R-sq: within between = 0.1 overall = 0.11	557			Obs per group avg = 150.0 max = 150	Ó	150
Wald chi2(3) corr(u_i, Xb)				Prob > chi2	= 0.206	56
pcsbundle	Coef.	Std. Err.	Z	P>z	[95% Conf	. Interval]
F	.033259	.0831433	0.40	0.689	_	.1962168
LFC	.1784656	.1018293	1.75	0.080	0211161	.3780473
_cons	.1680791	.0587912	2.86	0.004	.0528506	.2833077
rho_ar sigma_u sigma_e	.67447998 .18468721 .08351241	(estimated auto	ocorrelati	ion coefficient)		
rho_fov	.83024108	(fraction of var	riance du	e to u_i)		
theta	.88880847					
modified Bhar	rgava et al. D	urbin-Watson =	= .639650	08		
Baltagi-Wu L	BI = .660678	8				

Poisson regression model (9)

$$\ln(\sum e_{ij}^B) = \beta_F F + \beta_B B + \beta_{FB} (F \times B) + \alpha_i + \varepsilon_{ij},$$

$$i = 41,...,60 \qquad j = 31,...,180.$$

 $\sum e_{ij}^B$ represents the number of competitors that simultaneously exist in the B market in the ith session and jth period. β_F and β_B are the coefficients for the treatment variables, Fringe(F) and Bundle(B). β_{FB} is the coefficient for the interaction term (F *B). α_i is the session specific constant term and ε_{ij} stands for the observation specific disturbances that is assumed to be independent and normally distributed, $N(0,\sigma_{\varepsilon})$.

. xi: poisson fcb i.F*B if exclusion==1 & only150==1, robust cluster(session)

Iteration 0: log pseudo-likelihood = -4868.6905 Iteration 1: log pseudo-likelihood = -4868.6902

Poisson regression Number of obs = 3600

Wald chi2(3) = 22.26

Log pseudo-likelihood = -4868.6902 Prob > chi2 = 0.0001

(standard errors adjusted for clustering on session)

Robust

ecb	Coef.	Std. Err.	Z	$P>_Z$	[95% Conf	`Interval]
F	0337355	.0783676	-0.43	0.667	1873332	.1198622
В	6813126	.1587069	-4.29	0.000	9923725	3702527
F*B	1674004	.3102368	-0.54	0.589	7754532	.4406525
_cons	.9130856	.0452432	20.18	0.000	.8244106	1.001761

Random effects regression model (10)

$$\sum_{\{A,B,AB\}} CS_{ij} = \beta_F F + \beta_B B + \beta_{FB} F \times B + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 41,...,60 \qquad j = 31,...,180.$$

 $\sum_{\{A,B,AB\}}$ CS_{ij} represents the total consumer surplus extracted in the A and B markets in the ith session and jth period. $\beta_{\rm F}$ and $\beta_{\rm B}$ are the coefficients for the treatment variables,

Fringe (F) and Bundle (B). β_{FB} is the coefficient for the interaction term (F*B). μ_i and ϵ_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, N(0, σ_{μ}) and N(0, σ_{ϵ}).

. xi: xtreg pcsab i.F*B if exclusion==1 & only150==1, re i(session)

Random-effects GLS regression				Number of obs $=$ 3600				
Group variable (i): session				Number of groups = 20				
R-sq:	within $= 0.057$	74		Obs per group	Obs per group: min = 150			
betwee	en = 0.0629			avg = 180.0)			
overal	1 = 0.0323			max = 300)			
Rando	m effects u i ~	Gaussian	Wald chi2(3)	= 217.60				
	$\underline{i}, X) = 0$			Prob > chi2				
pcsab	Coef.	Std. Err.	Z	P>z	[95% Conf. Interval]			
F	.0071681	.0419886	0.17	0.864	075128 .0894642			
В	.0366276	.0363996	1.01	0.314	0347144 .1079696			
F*B	.0615919	.0422516	1.46	0.145	0212197 .1444034			
_cons	.5689451	.0296904	19.16	0.000	.5107529 .6271372			
sigma	u .06600)915						
sigma	-	5953						
rho	.39460	925 (fraction	of varia	nce due to u_i))			

Random effects regression model (11)

$$\sum_{\{A,B,AB\}} PS_{ij} = \beta_F F + \beta_B B + \beta_{FB} F \times B + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 41,...,60 \qquad j = 31,...,180.$$

 $\sum_{\{A,B,AB\}}$ represents the total seller surplus extracted in the A and B markets in the ith session and jth period. β_F and β_B are the coefficients for the treatment variables, *Fringe* (*F*) and *Bundle* (*B*). β_{FB} is the coefficient for the interaction term (F *B). μ_i and ϵ_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_\mu)$ and $N(0,\sigma_\epsilon)$.

. xi: xtreg ppsab i.F*B if exclusion==1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session				Number of obs = 3600 Number of groups = 20		
R-sq: within = 0.0535 between = 0.1465 overall = 0.0654				Obs per group: min = 150 avg = 180.0 max = 300		
	m effects $u_i \sim 0$ i, X = 0 (a			Wald chi2(3) Prob > chi2		
ppsab	Coef.	Std. Err.	Z	P>z	[95% Conf. Interval]	
F	0173579	.0274303	-0.63	0.527	0711204 .0364045	
В	039941	.0237806	-1.68	0.093	08655 .0066681	
F*B	0271248	.0276122	-0.98	0.326	0812437 .026994	
_cons	.2658868	.0193962	13.71	0.000	.227871 .3039026	
sigma_ sigma_ rho	_e .05496	5905	of varia	nnce due to u_i))	

Random effects regression model (12)

$$\sum_{\{A,B,AB\}} S_{ij} = \beta_F F + \beta_B B + \beta_{FB} F \times B + (\alpha + \mu_i) + \varepsilon_{ij},$$

$$i = 41,...,60 \qquad j = 31,...,180.$$

 $\sum_{\{A,B,AB\}}$ represents the total system (consumer + seller) surplus extracted in the A and B markets in the ith session and jth period. β_F and β_B are the coefficients for the treatment variables, Fringe(F) and Bundle(B). β_{FB} is the coefficient for the interaction term (F *B). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_\mu)$ and $N(0,\sigma_\varepsilon)$.

. xi: xtreg welfareab i.F*B if exclusion==1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session			Number of obs = 3600 Number of groups = 20			
R-sq: within = 0.0205 between = 0.0006 overall = 0.0024			Obs per group: $min = 150$ avg = 180.0 max = 300			
Random effectorr(u_i, X)	_			chi2(3) = chi2 =	, 5.50	
welfareab	Coef.	Std. Err.	\mathbf{Z}	$P>_Z$	[95% Conf.	Intervall
F	0101899	.0230216	-0.44	0.658	0553113	.0349316
В	0032878	.0199612	-0.16	0.869	042411 .	0358354
F*B	.0343648	.0231942	1.48	0.138	0110949	.0798246
_cons	.8348318	.0162787	51.28	0.000	.8029262	.8667375
sigma_u	.03617177					
sigma_e	.04911964					
rho	.35161217	(fraction of varia	ance due	e to u i)		

Random effects regression model (13)

$$p_{ij}^{A} = \beta_{F}F + \beta_{B}B + \beta_{FB}F \times B + (\alpha + \mu_{i}) + \varepsilon_{ij},$$

 $i = 41,...,60$ $j = 31,...,180.$

 p_{ij}^A represents the transaction price in the A market in the ith session and jth period. β_F and β_B are the coefficients for the treatment variables, Fringe(F) and Bundle(B). β_{FB} is the coefficient for the interaction term (F *B). μ_i and ε_{ij} are the session specific and observation specific random disturbances respectively, and both of them are assumed to be independent and normally distributed, $N(0,\sigma_\mu)$ and $N(0,\sigma_\varepsilon)$.

. xi: xtreg pat i.F*B if exclusion==1 & only150==1, re i(session)

Random-effects GLS regression Group variable (i): session				Number of ob Number of gro		340 20
R-sq: within = 0.1664 between = 0.0910 overall = 0.1006				Obs per group avg = 167.0 max = 295)	91
	m effects u_i i, X) = 0			Wald chi2(3) Prob > chi2		
pat	Coef.	Std. Err.	Z	$P>_Z$	[95% Conf	. Interval]
F	-2.726653	5.305568	-0.51	0.607	-13.12538	_
В	-3.777758	4.598273	-0.82	0.411	-12.79021	5.234693
F*B	-7.604432	5.320818	-1.43	0.153	-18.03304	2.82418
_cons	87.928	3.751603	23.44	0.000	80.57499	95.28101
sigma_ sigma_ rho	e 5.862	27184	of von	ianaa dua ta y	;)	
1110	.0709	95931 (fraction	or vari	ance due to u_i	IJ	

Fixed Effects Regression (14)

$$p_{ij}^{A} = \beta_F F + \alpha_i + \varepsilon_{ij},$$

$$i = 41,...,60 \qquad j = 31,...,180.$$

 p_{ij}^A represents the transaction price in the A market in the ith session and jth period. β_F represents the coefficient for the Fringe(F) treatment variable. α_i is the session specific constant term. ε_{ij} is the observation specific disturbance assumed to be independent and normally distributed, $N(0,\sigma_{\varepsilon})$.

. xi: xtreg pat F if exclusion==1 & only150==1, fe i(session)

Fixed-effects (within) regression

Group variable (i): session

Number of obs = 3340

Number of groups = 20

R-sq: within = 0.1664

Obs per group: min = 91

between = 0.0008 avg = 167.0 overall = 0.0146 max = 295

F(1,3319) = 662.71 $corr(u_i, Xb) = -0.4453$ Prob > F = 0.0000

T [95% Conf. Interval] Coef. Std. Err. P>tpat F -10.37971 .403202 -25.74 0.000 -11.17026 -9.589163 393.16 0.000 87.36139 88.2371 cons 87.79925 .223316

sigma_u 9.7742698 sigma_e 5.8627184

rho .73541648 (fraction of variance due to u_i)

F test that all u i=0: F(19, 3319) = 327.96 Prob > F = 0.0000

Fixed Effects Regression (15)

$$p_{ij}^{B} = \beta_{F}F + \alpha_{i} + \varepsilon_{ij},$$
 $i = 41,...,60 \qquad j = 31,...,180.$

 p_{ij}^B represents the transaction price in the B market in the ith session and jth period. β_F represents the coefficient for the Fringe(F) treatment variable. α_i is the session specific constant term. ε_{ij} is the observation specific disturbance assumed to be independent and normally distributed, $N(0,\sigma_E)$.

. xi: xtreg pbt F if exclusion==1 & only150==1, fe i(session)

Fixed-effects (within) regression

Number of obs = 2993

Group variable (i): session

Number of groups = 20

R-sq: within = 0.1008 Obs per group: min = 29 between = 0.0013 avg = 149.7overall = 0.0435 max = 271

F(1,2972) = 333.20 $corr(u_i, Xb) = -0.5584$ Prob > F = 0.0000

pbt Τ [95% Conf. Interval] Coef. Std. Err. P>tF -11.04016 .6048112 -18.25 0.000 -12.22605 -9.854264 117.24 0.000 36.35926 37.5961 cons 36.97768 .315397

sigma_u 7.6404119 sigma_e 8.1440821

rho .46812328 (fraction of variance due to u_i)

F test that all u i=0: F(19, 2972) = 62.56 Prob > F = 0.0000

Fixed Effects Regression (16)

 $corr(u_i, Xb) = -0.2491$

$$p_{ii}^{AB} = \beta_F F + \alpha_i + \varepsilon_{ii},$$

$$i = 41,...,60$$
 $j = 31,...,180$.

 p_{ij}^{AB} represents the bundle transaction price in the ith session and jth period. β_F represents the coefficient for the Fringe(F) treatment variable. α_i is the session specific constant term. ε_{ij} is the observation specific disturbance assumed to be independent and normally distributed, $N(0,\sigma_{\varepsilon})$.

. xi: xtreg pbundlet F if exclusion==1 & only150==1, fe i(session)

Fixed-effects (within) regression	Number of obs = 1883				
Group variable (i): session	Number of groups = 10				
R-sq: within = 0.0371	Obs per group: min = 27				
between = 0.1694	avg = 188.3				
overall = 0.0001	max = 300				
F(1,1872) = 72.21					

Prob > F

= 0.0000

sigma_u 22.378991 sigma_e 18.768965 rho .58706271 (fraction of variance due to u_i)

F test that all u i=0: F(9, 1872) = 176.50 Prob > F = 0.0000

Fixed Effects Regression (17)

$$\sum_{\{A,B,AB\}} CS_{ij} = \beta_F F + \alpha_i + \varepsilon_{ij} ,$$

$$i = 41,...,60$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}} CS_{ij}$ represents the total consumer surplus extracted in the A and B markets in the

ith session and jth period. β_F represents the coefficient for the *Fringe* (*F*) treatment variable. α_i is the session specific constant term. ε_{ij} is the observation specific disturbance assumed to be independent and normally distributed, $N(0,\sigma_{\varepsilon})$.

. xi: xtreg pcsab F if exclusion==1 & only150==1, fe i(session)

Fixed-effects (within) regression

Group variable (i): session

Number of obs = 3600

Number of groups = 20

R-sq: within = 0.0574 Obs per group: min = 150 between = 0.0286 avg = 180.0 overall = 0.0006 max = 300

F(1,3579) = 218.08corr(u i, Xb) = -0.4044 Prob > F = 0.0000

pcsab Coef. Std. Err. T P>t [95% Conf. Interval] F .0697092 .0047204 14.77 0.000 .0604543 .0789642 cons .5671508 .0025569 221.81 0.000 .5621377 .5721638

sigma_u .08222392 sigma_e .08175953

rho .50283193 (fraction of variance due to u_i)

F test that all u_i=0: F(19, 3579) = 148.92 Prob > F = 0.0000

Fixed Effects Regression (18)

$$\sum_{\{A,B,AB\}} PS_{ij} = \beta_F F + \alpha_i + \varepsilon_{ij} ,$$

$$i = 41,...,60$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}} PS_{ij}$ represents the total seller surplus extracted in the A and B markets in the ith

session and jth period. β_F represents the coefficient for the *Fringe* (*F*) treatment variable. α_i is the session specific constant term. ε_{ij} is the observation specific disturbance assumed to be independent and normally distributed, $N(0,\sigma_{\varepsilon})$.

. xi: xtreg ppsab F if exclusion==1 & only150==1, fe i(session)

Fixed-effects (within) regression

Group variable (i): session

Number of obs = 3600

Number of groups = 20

R-sq: within = 0.0535 Obs per group: min = 150 between = 0.0091 avg = 180.0 overall = 0.0031 max = 300

F(1,3579) = 202.26corr(u i, Xb) = -0.3429 Prob > F = 0.0000

ppsab Coef. Std. Err. T P>t [95% Conf. Interval] F -.0451347 .0031736 -14.22 0.000 -.051357 -.0389124 cons .2537463 .0017191 147.61 0.000 .2503759 .2571168

sigma_u .05479459 sigma_e .05496905

rho .49841059 (fraction of variance due to u_i)

F test that all u_i=0: F(19, 3579) = 158.53 Prob > F = 0.0000

Fixed Effects Regression (19)

$$\sum_{\{A,B,AB\}} S_{ij} = \beta_F F + \alpha_i + \varepsilon_{ij},$$

$$i = 41,...,60$$
 $j = 31,...,180$.

 $\sum_{\{A,B,AB\}} S_{ij}$ represents the total system (consumer + seller) surplus extracted in the A and B

markets in the ith session and jth period. β_F represents the coefficient for the *Fringe* (*F*) treatment variable. α_i is the session specific constant term. ϵ_{ij} is the observation specific disturbance assumed to be independent and normally distributed, $N(0,\sigma_{\epsilon})$.

. xi: xtreg welfareab F if exclusion==1 & only150==1, fe i(session)

Fixed-effects (within) regression Group variable (i): session			Number of obs = 3600 Number of groups = 20			
R-sq: within = 0.0205 between = 0.0442 overall = 0.0006		Obs per group: min = 150 avg = 180.0 max = 300				
F(1,3579) corr(u_i, Xb)			Prob >	> F = 0	0.0000	
welfareab	Coef.	Std. Err.	T	P>t	[95% Conf. Interval]	
F	.0245746	.0028359	8.67	0.000	.0190144 .0301347	
_cons	.8208971	.0015361	534.39	0.000	.8178853 .8239089	
sigma_u	.03859872					
sigma_e	.04911964					
rho	.38176108 (fraction of vari	ance du	e to u_i)		

F test that all u_i=0: F(19, 3579) = 87.84 Prob > F = 0.0000

Fixed Effects Regression (20)

sigma e

rho

.13762445

$$CS_{ij}^{AB} = \beta_F F + \alpha_i + \varepsilon_{ij},$$

$$i = 41,...,60$$
 $j = 31,...,180$.

 CS_{ij}^{AB} represents the surplus that consumers extract from the bundle in the ith session and jth period. β_F represents the coefficient for the *Fringe* (*F*) treatment variable. α_i is the session specific constant term. ε_{ij} is the observation specific disturbance assumed to be independent and normally distributed, $N(0,\sigma_{\varepsilon})$.

. xi: xtreg pcsbundle F if exclusion==1 & only150==1, fe i(session)

Fixed-effects (within) regression Group variable (i): session			Number of obs = 3600 Number of groups = 20			
R-sq: within between = 0.0 overall = 0.00	0009		Obs per group: min = 150 avg = 180.0 max = 300			
F(1,3579) corr(u_i, Xb)			Prob > F = 0.7927			
pcsbundle F _cons	Coef0020885 .2609179	Std. Err0079458 .0043039	T P>t [95% Conf. Interval 0.26 0.7930134901 .01766 0.62 0.000 .2524794 .269356	572		
sigma_u	.25617628					

F test that all u_i=0: F(19, 3579) = 611.44 Prob > F = 0.0000

.77602919 (fraction of variance due to u_i)