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1 Introduction

Algorithms are increasingly taking over price decisions on behalf of the firms
that employ them. Whereas pricing algorithms are also used in more tra-
ditional brick-and-mortar retailing, for example in supermarkets1 or gaso-
line stations2, the strongly growing e-commerce sector3 adds to their rapid
dissemination. In its “E-commerce Sector Inquiry,” the EU Commission
(2017) reports that a majority of online firms track the prices of competi-
tors and two-thirds of these use algorithmic pricing software. So, algorithms
are on the rise.

While algorithms may benefit consumers,4 a major concern is that they
could weaken competition and make supracompetitive prices more likely.
The challenges associated with algorithmic pricing, in particular, the risk
of tacit collusion are widely discussed (Ezrachi and Stucke, 2016, 2017;
Harrington, 2018, 2020; Haucap, 2021; Mehra, 2016; Monopolkommission,
2018; OECD, 2017; Oxera, 2017) and seem to be high on the agenda of com-
petition authorities around the world (British Competition and Markets
Authority, 2018, 2021; Bundeskartellamt and Autorité de la Concurrence,
2019; Competition Bureau Canada, 2018).

Empirical research suggests that the pricing algorithms currently fore-
most used in digital markets follow relatively simple pricing strategies
(British Competition and Markets Authority, 2018; Monopolkommission,
2018; Musolff, 2021; Wieting and Sapi, 2021). Static algorithms that fol-
low a manageable number of simple pricing rules appear to be common.
The lack of sophistication may actually increase the risk of tacit collu-
sion. Supracompetitive prices could become more likely by having these
algorithms induce firms to behave in a predictable and consistent man-

1See “Surge Pricing Comes To The Supermarket,” The Guardian, June 4, 2017,
available at: https://bit.ly/3mf9IQp (last accessed on March 11, 2021).

2See Assad et al. (2020) and “Why Do Gas Station Prices Constantly Change? Blame
the Algorithms,” Wall Street Journal, May 8, 2017, available at: https://on.wsj.com/
3vRCRo3 (last accessed on March 11, 2022).

3In 2020, 72% of internet users in the EU ordered goods or services online. See 2020
Eurostat Community Survey on ICT usage in households and by individuals, available
at: https://bit.ly/3biBEga (last accessed on March 11, 2022).

4Algorithms are ideally suited to deal with the wealth of data available online on
competitors and customers. Pricing algorithms can adjust prices, enable consistent
pricing strategies and react immediately to any changes in the market environment
(OECD, 2017). Such efficiency gains may ultimately be good for consumers.
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ner (British Competition and Markets Authority, 2018; Wieting and Sapi,
2021).5 When interacting with humans, such algorithms could facilitate
collusion. Algorithms act in a more systematic and reliable way than hu-
mans. Delegating pricing to such an algorithm reduces the strategy sets
and can thus simplify the coordination via the market (Byrne and De Roos,
2019; Musolff, 2021; Kastius and Schlosser, 2021).6

Our paper analyzes these issues in “hybrid” markets where human play-
ers and algorithms interact. We study in experimental oligopolies the
price level when exclusively humans interact to the case when one firm
in the market delegates its decisions to a simple algorithm. Our research
question is whether the presence of an algorithm leads to an increase in
prices. Hitherto, surprisingly few laboratory experiments have studied co-
operation when one or more players are computerized, and none compares
human-computer to all-human interaction. Roth and Murnighan (1978)
and Murnighan and Roth (1983) analyze two-player prisoner’s dilemmas
when subjects know they face a algorithmic opponent.7 Duffy and Xie
(2016) have single humans play against n − 1 grim trigger players, and the
authors vary n. Recently, Duffy et al. (2021) let participants play two-
player prisoner’s dilemma supergames against a grim-trigger algorithm. In
Duffy and Xie (2016) and Duffy et al. (2021), subjects know the strategy
the algorithm plays. This is not the case in Roth and Murnighan (1978)
and Murnighan and Roth (1983). The four studies have in common that
they do not have comparison treatments when the opponents are human.

5Wieting and Sapi (2021) analyze the e-commerce platform Bol.com (the largest on-
line marketplace in Belgium and the Netherlands) and identify pricing software that
was foremost “relatively unsophisticated” and “consist of a finite set of if-then state-
ments.” Wieting and Sapi (2021) conclude that “[a] secret to successful collusion may
lie in managers’ ability to commit to simple strategies”.

6Byrne and De Roos (2019) study a data set from the retail gasoline industry in an
Australian city. Their findings suggest that firms “may adopt simple pricing structures,
even in the presence of perfect price monitoring, because they are easy to experiment
with and communicate to rivals”. Musolff (2021) employs data on the pricing decisions
made by third-party sellers on the e-commerce platform amazon and finds that “delega-
tion of pricing to simple algorithms can facilitate tacit collusion by reducing the set of
available strategies”. Kastius and Schlosser (2021) show that a simple pricing rule can
force a self-learning reinforcement algorithm to collude by plainly pricing competitively
until the algorithm “agrees” to charge a high price.

7Roth and Murnighan (1978) and Murnighan and Roth (1983) are known to be the
first to study “infinitely” repeated games in the lab by imposing a random move that
determines the end of a supergame.
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A second novelty of our study is that we explore the role of human
beliefs about algorithms. We vary (in a non-deceptive manner) whether or
not participants know about the presence of the algorithm. Do participants
behave differently when they are aware they are facing an algorithm? This
may indeed be the case: Studies on “algorithm aversion” show that people
avoid algorithmic advice even though the algorithm is superior to humans
(Dietvorst and Bharti, 2020; Dietvorst et al., 2016, 2015). Furthermore,
Farjam and Kirchkamp (2018) show in a laboratory asset market that
humans trade differently if they expect algorithmic traders. As a possi-
ble explanation, they suggest that human traders perceive the algorithmic
traders as behaving more rationally. De Melo et al. (2015) find that people
tend to make different decisions depending on whether they are facing a
human or a computer algorithm.8 Thus, it seems warranted to test whether
expectations about algorithms influence the behavior of participants.

To analyze these research questions, we opted for a rather simple and
transparent experimental design. In three-firm markets, participants have
two actions (high price, low price) available, so they play an three-player
prisoner’s dilemma.9 As mentioned, one of the human participants may
be replaced by an algorithm. The algorithm we use is a multiplayer gen-
eralization of tit-for-tat (Axelrod, 1984; Hilbe et al., 2015). It begins by
cooperating, but subsequently adapts to the level of cooperation in the
market. Tit-for-tat is cooperative, so when matched with other cooper-
ative strategies, it achieves collusive payoffs. It is also forgiving in that
it can return to cooperation after an accidental deviation and it avoids
the exploitation by defectors. Having said that, our algorithm is not fe-
rociously committed to cooperate and thus seems suitable to meaningfully
study human-algorithm interaction.

We choose the specific algorithm in order to give cooperation a reason-
able good chance. Our algorithm is comparable to the above mentioned
relatively simple programs appear to be used in online markets (British
Competition and Markets Authority, 2018; Monopolkommission, 2018; Mu-

8For related findings, see Dijkstra et al. (1998), Weibel et al. (2008), Krach et al.
(2008), Lee (2018) and Rilling et al. (2004).

9While collusion is less likely in markets with more than two competitors, the reduced
action set may promote tacit collusion (Gangadharan and Nikiforakis, 2009). For a
recent survey on prisoner’s dilemma games see Mengel (2018).
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solff, 2021; Wieting and Sapi, 2021). Another strand of literature investi-
gates the collusive potential of rather complex self-learning reinforcement
algorithms. Whereas the learning mechanisms (often Q-learning) behind
these algorithms are hugely complicated, the strategies they produce are
memory one—a property they share with our algorithm.10

Experiments with three firms seem promising when it comes to identi-
fying collusive effects in that duopolies can be collusive, whereas markets
with four or more firms are usually not, see Engel (2015), Fonseca and
Normann (2012), Huck et al. (2004), Potters and Suetens (2013). The
evidence on cooperation in three-player groups is somewhat inconclusive
(and hence a good starting point for us). While Horstmann et al. (2018)
do find some collusion in three-firm oligopolies with differentiated goods,
Freitag et al. (2020) do not find any supracompetitive outcomes in a mul-
timarket context benign to collusion. Already Marwell and Schmitt (1972)
reported that three-person prisoner’s dilemmas are substantially less coop-
erative than two-player experiments. Roux and Thöni (2015) demonstrate
that larger oligopolies become collusive only when targeted punishments
are available.

Our findings are as follows. The markets involving an algorithmic player
are significantly more collusive than human-only triopolies. While this
higher level of collusion raises profits for all firms in the industry, it turns
out that those firms that employ the algorithm earn significantly less profit
than their rivals. Knowing or not knowing about the presence does not
affect competition significantly. Interestingly, however, humans seem to
link cooperation to human behavior and not an algorithm.

10This literature shows that self-learning algorithms are able learn to play repeated-
game strategies that maximize joint profits without explicitly being instructed to do
so (Calvano et al., 2020, 2021; Klein, 2020). After an off-the-job learning phase, the
algorithms execute a memory-one pricing strategy on the market. When two such al-
gorithms interact with each other, striking levels of collusion occur. In their online
appendix, (Calvano et al., 2020) briefly report on memory-two algorithms. As the state
space disproportionally increases with a two-period memory, these algorithms perform
less collusively. Dal Bó and Fréchette (2019) and Romero and Rosokha (2019) recently
found that the strategies of human subjects in lab experiments are often memory-one.
See also Fudenberg and Karreskog (2020).
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2 Experimental Design

The stage game underlying the experiment is a three-player prisoner’s
dilemma framed as a market interaction. Players choose a high price or
a low price, so the action set for all players is {phigh, plow}. Payoffs are
as in Table 1 (which is similar to the one used in the experiment). These
payoffs are derived from a Bertrand oligopoly model with inelastic demand
and constant marginal costs of production.11 For actions phigh = 100 and
plow = 60, the payoffs in Table 1 result.

Other firms’ prices

phigh, phigh phigh, plow plow, plow

O
w

n
pr

ic
e

phigh 800 0 0

plow 1,440 720 480

Table 1: Payoff table.

We run four treatments in a 2×2 design. We vary treatments with and
without algorithms and treatments with and without information on the
presence of the algorithm. See Table 2.

Three humans Two humans,
one algorithm

Human Uncertain Algorithm Uncertain

Human Certain Algorithm Certain

Table 2: Treatment design.

In all experiments, groups of three participants constitute one market.
In the treatments labeled “Human ,” there are three human players. In
the treatments labeled “Algorithm ,” there are two human players and one

11Suppose there are m = 24 consumers who demand one unit of the good up to a
reservation price of 100. Each player can supply all consumers at production costs of
zero. The player that charges the lowest price serves all consumers; if several players
charge the lowest price, they split the profit equally.
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algorithm. In treatments involving an algorithm, the computer decides on
behalf of one firm. That firm is nevertheless represented by an experimental
subject, but he or she is inactive and merely obtains the payoff earned by
the algorithm.

The second treatment dimension indicates whether the participants
know the composition of the market.12 In the treatments labeled
“ Certain,” participants know from the instructions whether or not an al-
gorithm is present. In the “ Uncertain” treatments, the participants do not
know if they are part of the Human Uncertain or the Algorithm Uncertain
treatment, so they do not know whether an algorithm is present. They
are merely told that, with a probability of 50%, one of the three subjects’
decisions is taken by an algorithm. We conducted the same number of
sessions in both treatments. Thus, consistent with the instructions, there
was a 50% chance that the participants were in the Algorithm Uncertain
treatment.

The algorithm is programmed to play proportional tit-for-tat, or pTFT

(Hilbe et al., 2015). It is an n-player generalization of tit-for-tat (Axelrod,
1984): Let t be the index for time. The algorithm begins by cooperating in
the first period (t = 0) and later cooperates proportionally to the number
of cooperators in the previous period. Accordingly, pTFT chooses the high
price with the following probabilities

prob.(p = phigh) =

 1 if t = 0
j

n−1 if t > 0

where n is the number of players including the algorithm player and j ∈
{0, 1, 2, ..., n − 1} is the number of rival players who chose phigh in the
previous period. Subjects are not told how the algorithm is programmed.
Nor are they told the algorithm’s purpose.

The treatments are implemented as repeated games, and all treatments
have three supergames.13 The subjects stay in the same market throughout
the periods of the supergames. When a new supergame begins, subjects are

12Regarding this point, our design is similar to the one in Farjam and Kirchkamp
(2018).

13See Honhon and Hyndman (2020) for an analysis of how matching schemes and
reputation mechanisms affect cooperation in the repeated prisoner’s dilemma.
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randomly assigned to a new market. In other words, we have fixed match-
ing within supergames and random matching across supergames. Each
supergame lasts at least 20 periods. From the 20th period onward, a ran-
dom rule with a continuation probability of 7/10 determines whether play
continues. The number of periods in all three rounds was determined ex
ante and is the same in all sessions (24, 20 and 21 periods). Subjects knew
they would play three supergames from the instructions and they also knew
the termination probability.

3 Hypotheses

An algorithm may affect human behavior via (at least) two channels. We
call these the belief channel and the action channel. The two channels
affect behavior differently and give rise to different hypotheses.14

We begin with actions. At least in the long run, human subjects will
probably be influenced by the algorithm’s actual price-setting behavior and
its responses, including the punishments it triggers, and so on. In other
words, the algorithm’s actions will matter.

Our pTFT algorithm is more collusive than the average human and this
should have a positive effect on the proportion of phigh choices in a market.
A prominent recent literature (Dal Bó and Fréchette, 2011, 2018; Bigoni
et al., 2015; Fudenberg et al., 2012; Fudenberg and Karreskog, 2020) inves-
tigates in two-player PDs repeated-game strategies and finds that the three
strategies always defect (AD), grim trigger (GT ), and tit-for-tat (TFT )
account for most of the data. The pTFT algorithm always cooperates
in the first period and rewards cooperation in the following periods. So
the algorithm is somewhat forgiving and willing to resume to cooperation,
provided other players do so. This is in contrast to GT (and of course
AD).15 Thus, compared to a human who plays AD, GT or TFT with

14A third channel could be altered other-regarding preferences: Participants may feel
inclined to defect when playing with an algorithm, but not with a human participant,
especially if the money earned by the algorithm is kept by the experimenter. Our
Algorithm treatments, however, involved three human participants; the profit earned
by the algorithm was paid out to a (passive) human participant. Therefore, altered
other-regarding preferences should not play a role.

15Strategies that are more lenient than TFT include tit-for-two-tats and tit-for-three-
tats. They defect only after the other player has defected two/three times. And perfect
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some probability, the algorithm is more cooperative. Modelling a ratio-
nal player’s decision, we show in the Appendix A.1 that cooperation in
the presence of an pTFT -algorithm can be a subgame-perfect Nash equi-
librium. When we take strategic risk into account (Blonski et al., 2011;
Blonski and Spagnolo, 2015; Dal Bó and Fréchette, 2018), we demonstrate
that the minimum discount factor required for cooperation is higher for
three GT players compared to two GT players and one pTFT (Appendix
A.1). We thus hypothesize the pTFT algorithm should increase coopera-
tion.

We turn to beliefs. Human subjects may expect the algorithm to play
differently than other humans. Responding to this belief, humans adjust
their behavior accordingly.16 But in which direction will the belief be af-
fected?

We hypothesize humans to be skeptical about the play of an algorithmic
competitor, so they expect less cooperation when an algorithm is present.
News about algorithms beating humans at Chess or Go demonstrate the
power of machines in zero-sum games. This may suggest that humans also
lose against the algorithm in the market domain – that is, firms run by
humans earn less profit. Trust is an important part of successful collu-
sion, but the literature on algorithm aversion (Dietvorst and Bharti, 2020;
Dietvorst et al., 2015) suggests that humans trust algorithms less than
other humans. Along these lines, Farjam and Kirchkamp (2018) find that
algorithms are perceived as “more rational.” This could correspond to
skeptical expectations. From the subjects’ perspective, “rationality” could
imply that the algorithm will attempt to exploit human participants to
gain higher profits through competitive behavior. Reports on competitive
algorithmic price wars17 and the fact that online shopping – often asso-

tit-for-tat (or win-stay-lose-shift) is a strategy that, unlike TFT , even actively returns
to cooperation after an all-defect outcome.

16There is ample evidence that human subjects respond to beliefs about the action of
others. In the prisoner’s dilemma, there are two motives for defection (Ahn et al., 2001;
Blanco et al., 2014; Charness et al., 2016). Subjects fear being exploited by others, but
some may greedily also want to exploit others themselves.

17For example, CBNC reports on undercutting competition between Wal-Mart and
Amazon through algorithmic pricing: Sarah Whitten,“Wal-Mart Scammed Into Selling
PlayStation 4 for $90” CNBC November 18, 2014, available at: https://cnb.cx/3BiNRfm
(last accessed on March 11, 2021); Also, the consultancy Simon-Kucher & Partners
reports, in its 2019 Global Pricing Study, that 57% of the companies report they are
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ciated with algorithmic pricing – is considered a low-price alternative to
brick-and-mortar purchases18 could give rise to the notion that algorithms
are particularly competitive. Furthermore, recall that participants are un-
aware of the algorithm’s strategy, so there is little to suggest that subjects
think it is pursuing long-run joint-profit maximization. We thus expect
that subjects perceive algorithms as less cooperative than humans and this
should, ceteris paribus, yield lower cooperation rates.

We now put these conjectures together and state our hypotheses. We
begin with the influence of the algorithm’s action. The Uncertain treat-
ments are identical in terms of the instructions and the possibility of an
algorithm being present, so the beliefs cannot matter. Here, however, the
algorithm’s actual play may have an impact. We hypothesize:

Hypothesis H1: Cooperation rates in Algorithm Uncertain are higher
than those in Human Uncertain.

For the Certain treatments, the actual play of the algorithm, on the
one hand, and skeptical beliefs, on the other, imply ambiguous effects of al-
gorithms. Consistent with Farjam and Kirchkamp (2018), we hypothesize
that the use of algorithms will have a positive overall impact on collusion
because we provide ample evidence of learning (three relatively long re-
peated games). Given these learning opportunities, subjects may update
their beliefs and adjust them according to the more cooperative behavior
of the algorithm. We hypothesize:

Hypothesis H2: Cooperation rates in Algorithm Certain are higher than
those in Human Certain.

Next, we consider the two Algorithm treatments. The algorithm’s
actions are the same here, but in Algorithm Certain, subjects know for

currently involved in a price war. Available at: https://bit.ly/3mjWt15 (last accessed
on March 11, 2021).

18Prices play an important role in online shopping. Degeratu et al. (2000) find that
online promotions are stronger signals for price discounts than offline promotions and
the price sensitivity of consumers is higher online. A representative survey of German
consumers has also shown that 52% of them are convinced that it is cheaper to buy
products online, available at: https://bit.ly/2Zu7PGv (last accessed on March 11, 2021).
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sure they are facing an algorithm, whereas in Algorithm Uncertain, they
might still be competing with a human. Based on our presumption of
skeptical beliefs, we hypothesize:

Hypothesis H3: Cooperation rates in Algorithm Uncertain are higher
than those in Algorithm Certain.

For the Human treatments, it is the other way round. The third player
is controlled by a human either way, but in Human Uncertain, participants
expect to meet an algorithm with 50% likelihood. So participants should
be more optimistic in Human Certain. We obtain:

Hypothesis H4: Cooperation rates in Human Certain are higher than
those in Human Uncertain.

Taking hypotheses H1 to H4 together, we obtain an unambiguous and
testable ranking for the cooperativeness of our treatments. We should
observe that the levels of cooperation satisfy

Algorithm U > Algorithm C > Human C > Human U (1)

4 Procedures

Subjects were recruited from pools of subjects who had previously volun-
teered to participate in lab experiments. The experiments involved 309
participants in total. None of the subjects participated in more than one
session. We had 16 sessions in total, four for each of the four treatments.
The session sizes varied between 12 and 30 participants. The experimen-
tal sessions were conducted at labs in Düsseldorf and MPI Bonn between
August 2019 and October 2020. No sessions were conducted between early
March and mid-July 2020, due to the pandemic. Sessions from mid-July
2020 on were conducted under common hygiene rules. See A.4 in the ap-
pendix for session details.

Upon arrival at the laboratory, subjects were randomly assigned to a
cubicle, using tokens with the cubicle numbers. After a sufficient num-
ber of participants had arrived, the experiment started and participants
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received a hard copy of the instructions in German. While reading the
instructions, subjects were allowed to ask questions privately in their cu-
bicles. Afterwards, control questions made sure everyone had understood
the task.

The decision-making parts were conducted as follows. We programmed
the experiment in z-Tree (Fischbacher, 2007). In each period, the subjects
had to decide by clicking a button whether they wanted to set phigh or plow.
After everyone had decided, an information screen displayed the choices of
all three firms in the market and informed subjects about their payoff. At
the end of a supergame, the individual overall payoff for that supergame
was displayed and the subjects were informed that they would now be
assigned to a new market, unless it was the last supergame.

We used an Experimental Currency Unit, where 1,000 ECU corre-
sponded to 1 Euro. One of the three supergames was randomly chosen
for payout. At the end of the third supergame, the subjects were informed
about the supergame selected for payout and their total earnings.

In the Uncertain treatments, we further asked participants whether
they thought an algorithm was present in the experiment. This was done
at the end after the last period of the last supergame. Subjects had to
enter a number between zero and 100, expressing how confident they were
that an algorithm was in the market. They were paid up to 2 euros for
a correct guess: Given a guess x ∈ {0, 1, 2, ..., 100} that an algorithm was
present, the payoff was 2x/100 if this was actually the case and 2 − 2x/100
if not. (Participants for whom the algorithm decided were paid 1 euro flat
instead.)

The sessions lasted for about 60 minutes. The average payment was
17.73 euro, including a show-up fee.

11



Figure 1: Cooperation rates over time (periods 6 to 19).

5 Results

5.1 Overview

Figure 1 shows how cooperation rates19 in the different treatments develop
over time and supergames.20 Generally, cooperation increases across su-
pergames: In supergame 1, cooperation rates vary roughly between zero
and less than 30%, whereas in supergame 3 they vary between 20 and more
than 50%. It appears participants learn to collude tacitly with repetitions
of the supergame, confirming the results of Bigoni et al. (2015), Dal Bó
and Fréchette (2011, 2018), and Fudenberg et al. (2012).

A closer look reveals that cooperation rates improve for all treatments in
supergame 2, but when comparing supergames 2 and 3, only the treatments
involving an algorithm increase substantially.21 This is evidence that the

19The cooperation rate is defined as the number of phigh choices divided by the total
number of choices, given a treatment or period of play.

20To exclude restart and endgame effects, we focus on periods 6 to 19. The same
graph including all periods can be found in A.5 of the appendix.

21There is a very minor increase of cooperation in Human Certain by 0.2 percentage
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SG 1 SG 2 SG 3 All

Human Uncertain 0.123 0.221 0.218 0.187
(0.328) (0.415) (0.413) (0.390)

Algorithm Uncertain 0.111 0.395 0.506 0.337
(0.315) (0.489) (0.500) (0.473)

Human Certain 0.233 0.275 0.277 0.262
(0.423) (0.447) (0.448) (0.440)

Algorithm Certain 0.162 0.303 0.381 0.282
(0.369) (0.460) (0.486) (0.450)

Standard deviations in parentheses.

Table 3: Average cooperation rates (periods 6 to 19) in supergames (SG)
1 to 3 and across all supergames.

algorithm has a collusive impact.
Complementing Figure 1, Table 3 shows the cooperation rates averaged

across periods 6 to 19. We note that the Algorithm treatments have higher
averages than their Human counterparts in supergames 2 and 3. Taking
all supergames into account, the highest cooperation rate is observed in
Algorithm Uncertain (0.337), followed by Algorithm Certain (0.282) which,
in turn, exhibits more cooperation than Human Certain (0.262). We find
higher cooperation in Human Certain than in Human Uncertain (0.187).
This is exactly the ranking of treatments we hypothesize in (1). This order
does not change if we include all periods or focus only on the decisions of
human subjects (that is, if we exclude the algorithms’ decisions). See A.5
and A.6 of the appendix for details.

How successful are the firms in actually establishing the collusive out-
come? Figure 2 shows the percentages of three outcomes for the four treat-
ments in the last supergame: “tacit collusion” indicates successful cooper-
ation – all firms choose phigh; “competition” means that all firms charge
plow; and “failed collusion” occurs when at least one firm chooses plow and at
least one firm tried to collude – this is miscoordination. Again, it becomes

points when comparing supergames 2 and 3. See Table 3.
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Figure 2: Collusive and competitive outcomes (supergame 3, periods 6 to
19).

clear that successful coordination on the high price occurs more often in
Algorithm Uncertain and Algorithm Certain. The two extremes are Al-
gorithm Uncertain with roughly 50% competition whereas Human Certain
involved almost 80% competition. The share of outcomes with miscoor-
dination (failed collusion) is remarkably small in all treatments, meaning
that subjects quickly coordinate on either the cooperative or the competi-
tive outcome. This is also apparent from the quick drop in cooperation in
the first five periods (see in A.5 of the appendix).

5.2 Treatment differences

We now systematically test our hypotheses and make statistically reliable
statements about treatment effects. Throughout, we take the possible de-
pendence of observations into account using bootstrapping standard errors
at the session level. See Cameron et al. (2008).
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Supergame 1 Supergame 2 Supergame 3 All

algorithm -0.0225 0.00490 0.108** 0.172*** 0.185** 0.255** 0.0847 0.137**
(0.0528) (0.0566) (0.0526) (0.0654) (0.0813) (0.110) (0.0516) (0.0556)

certain 0.0706 0.100 0.000116 0.0691 -0.0292 0.0466 0.0166 0.0733
(0.0542) (0.0966) (0.0515) (0.0839) (0.0833) (0.112) (0.0523) (0.0818)

algorithm × certain -0.0564 -0.132 -0.145 -0.108
(0.117) (0.0991) (0.170) (0.105)

periods 1 to 5 0.0867*** 0.0867*** 0.129*** 0.129*** 0.116*** 0.116*** 0.110*** 0.110***
(0.0234) (0.0235) (0.0177) (0.0173) (0.0199) (0.0198) (0.0133) (0.0132)

periods 20 to 25 -0.0524*** -0.0524*** -0.0522*** -0.0522*** -0.129*** -0.129*** -0.0821*** -0.0821***
(0.0159) (0.0159) (0.0160) (0.0159) (0.0292) (0.0289) (0.0108) (0.0107)

supergame 0.0968*** 0.0968***
(0.0216) (0.0210)

Constant 0.133*** 0.118*** 0.245*** 0.211*** 0.268*** 0.231*** 0.120*** 0.0923***
(0.0405) (0.0372) (0.0518) (0.0561) (0.0625) (0.0531) (0.0401) (0.0309)

Obs. 7,416 7,416 6,180 6,180 6,489 6,489 20,085 20,085
R2 0.025 0.027 0.029 0.033 0.057 0.063 0.062 0.066

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: Treatment effects, all periods, linear probability model.
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Table 4 shows the results of a linear probability model and highlights
the main treatment effects we observe. Our dependent variable is whether
or not a firm (participant or algorithm) cooperates in a given period. We
include as explanatory variables dummies for the Algorithm treatments,
the Certain treatments, the interaction of the two, and for the initial
and terminal periods of play. We report the results separately for the three
supergames and jointly for all supergames where we add a cardinal variable
for supergame. For the regression including all supergames, the constant
reflects supergame 1.

The impact of the algorithm is positive and statistically significant from
supergame 2 onward. When analyzing them jointly, the two Algorithm
treatments cooperate better than the two Human treatments. The impact
of Certain is positive, small, and insignificant. When we add the inter-
action algorithm × certain, the coefficient algorithm becomes stronger
and remains significant. This indicates that the cooperation rates in Al-
gorithm Uncertain and Human Uncertain differ significantly (Hypothesis
H1). Comparing the two Certain treatments separately, we find no signif-
icant effect of the algorithm, so no support for Hypothesis H2.22

Result 1. The Algorithm treatments jointly exhibit significantly higher
prices than the Human treatments. Cooperation rates are significantly
higher in Algorithm Uncertain compared to Human Uncertain. We find
no statistically significant effects when comparing Algorithm Certain and
Human Certain.

We hypothesize that human subjects play more competitively if they
knowingly face or expect to face an algorithmic opponent. But neither the
comparison of Algorithm Uncertain and Algorithm Certain (H3), nor of
Human Uncertain and Human Certain (H4) shows significant effects. This
suggests that expectations do not play a major role in these regressions.

Result 2. We find no statistically significant effects between the Uncertain
and the Certain treatments.

One interpretation of Result 2 is that expectations do not matter much
22Across all supergames, the effect of the algorithm in the Certain treatments is

statistically insignificant (p > 0.1).
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when subjects gain experience. Below, we report in detail on period-one
data, but we note already here that even in the first period we cannot
find much statistical support regarding differences between Uncertain and
Certain. It appears that even in the very first period of play (first period of

the first supergame), when subjects are inexperienced, beliefs do not have
a big impact.

Support for our beliefs hypothesis can nevertheless be detected. The
mean cooperation rates correspond to our hypothesis. For the Algorithm
treatments, we find (insignificantly) more collusion in Uncertain than in
Certain in supergames two and three and all supergames. For the Hu-

man variants, subjects were more collusive in Certain than in Uncertain
in all supergames, as predicted. Recall that we can rank our treatments
according to our hypotheses, see (1). Creating a cardinal rank variable
(with 1 = Algorithm Uncertain and 4 = Human Uncertain) in our dataset
allows for an ordered alternative hypothesis of the multiple independent
samples jointly.23 We see that this ranking variable has a significantly neg-
ative effect on the choice in the third supergame (linear probability model,
p < 0.05, see Appendix A.2). The effect is also significant for the second
supergame and over all supergames (both p < 0.05).

Result 3. Consistent with our hypotheses, the variable ranking for the
order of competitiveness of the treatments has a significant negative effect
on the cooperation rate.

Another piece of evidence in favor of our hypothesis on expectations
comes from the incentivized guess in the Uncertain treatments. This is
what we analyze in detail next.

5.3 Beliefs about the presence of an algorithm

In the two Uncertain treatments, we asked participants in an incentivized
manner at the end of the experiment about their beliefs of whether one of
the firms was equipped with an algorithm. Subjects had to state a proba-
bility (a number between zero and 100) that an “algorithm was present in

23Similar to a non-parametric Jonckheere-Terpstra test, which is likewise highly sig-
nificant.
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Guess

algorithm -12.19** -8.663**
(4.916) (4.374)

sum miss-coordinated 1.303***
outcomes (0.361)
Constant 58.06*** 43.78***

(3.920) (5.216)

Obs. 131 131
R2 0.027 0.072

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 5: Incentivized guess about the presence of an algorithm in the
Uncertain treatments, linear probability model.

the experiment.”
It turns out that subjects in Human Uncertain maintain an average

belief of 58.05% whereas those in Algorithm Uncertain have a belief of
45.87%. That is, participants are more inclined to believe an algorithm was
present when this was not the case. Table 5 (first column) shows the results
of a linear probability regression with data from Algorithm Uncertain and
Human Uncertain and algorithm as an explanatory variable. The variable
algorithm is negative and significant at p < 0.05.

Result 4. Guesses about an algorithm being present in the market are
significantly lower in Algorithm Uncertain compared to Human Uncertain.

One possible explanation for this surprising finding is that participants
associate cooperation with human behavior and not an algorithm.24 Coop-
eration rates in Algorithm Uncertain are significantly higher than in Hu-
man Uncertain, and the lower performance of Human Uncertain is clearly
associated with a higher belief of an algorithm being present. When we add
as an explanatory variable to the regressions in Table 5 (second column),
the number of miscoordinated outcomes (one or two firms chooses plow and

24According to Lee (2018), participants rate algorithmic decisions as less fair, trust al-
gorithmic decisions less, and feel less positive about algorithmic decisions when it comes
to tasks requiring human skills. With mechanical tasks, the fairness and trustworthiness
of algorithms were attributed to their perceived efficiency and objectivity.
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at least one firm chooses phigh) which a participant experiences during the
entire course of the experiment, this variable is positive and highly signif-
icant (p < 0.01) and the magnitude of the algorithm coefficient decreases,
but is still significant (p < 0.05). We take this as confirmation that the
participants expect the algorithm to be more competitive than humans.25

5.4 Differences between human and algorithmic play

One immediate effect of the pTFT strategy is that it begins a supergame
by choosing the high price with probability one, in contrast to the aver-
age human subject. Hence, a first attempt at finding differences between
humans and the algorithm is to take a closer look at period-one decisions.

Table 6 shows details of regressions similar to those in Section 5.2 above,
but truncating the data to the first period of each supergame. The algo-
rithm has a substantial and significant effect on the cooperation rate in
the first period throughout.26 This is perhaps not surprising because of
the way the algorithm is programmed, but it is important to state this ef-
fect formally because of the significance of period-one behavior for overall
cooperation.

Result 5. Cooperation rates in the first period are significantly higher
in the Algorithm treatments compared to the Human treatments. This
also holds when comparing Algorithm Uncertain vs. Human Uncertain, and
Algorithm Certain vs. Human Certain separately.

25Quotes from a post-experimental questionnaire are consistent with this conclusion.
We emphasize that these subjects did not play a Human variant, so the comparisons
they draw reflect their beliefs: “Nice experiment, the inclusion of the algorithm was a
clever idea and could damage the mutual trust between the companies so much that they
basically sold low even though this was against their own interests.”, or “The introduction
of the algorithm makes it much harder to communicate about prices, as ideally each
company sets a high price so that the market as a whole makes the most profit. However,
since the algorithm is (or at least seems to be) unpredictable in such a short period of
time, this is much more difficult to communicate.”

26The effect is also significant comparing the Uncertain and Certain treatments
separately. Across all supergames both p-values < 0.01.
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Supergame 1 Supergame 2 Supergame 3 All

algorithm 0.166*** 0.143** 0.160*** 0.167** 0.202*** 0.225*** 0.176*** 0.178***
(0.0446) (0.0668) (0.0399) (0.0724) (0.0487) (0.0676) (0.0375) (0.0600)

certain 0.0526 0.0278 0.0664* 0.0739 0.0360 0.0606 0.0517 0.0541
(0.0436) (0.0817) (0.0399) (0.0668) (0.0485) (0.0852) (0.0369) (0.0715)

algorithm × certain 0.0473 -0.0144 -0.0468 -0.00462
(0.0889) (0.0869) (0.101) (0.0789)

supergame 0.0777*** 0.0777***
(0.00911) (0.00896)

Constant 0.321*** 0.333*** 0.444*** 0.440*** 0.465*** 0.453*** 0.332*** 0.331***
(0.0485) (0.0639) (0.0407) (0.0540) (0.0487) (0.0634) (0.0441) (0.0601)

Obs. 309 309 309 309 309 309 927 927
R2 0.031 0.031 0.030 0.030 0.043 0.044 0.050 0.050

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 6: Cooperation in the first period, linear probability model.
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Figure 3 is an alluvial flow diagram that illustrates how humans compare
to the algorithm with respect to such individual decisions. It is based on
decisions by humans only, using data from all treatments, periods 1 to
19 and all supergames.27 The figure shows how participants’ decisions
in period t − 1 (left-hand side of the figure) map into market outcomes
(middle), and how conditional on these outcomes decisions in period t

emerge. The market outcome is defined as the number of phigh choices
of all players in a market, including the subject herself and possibly the
algorithm.

Let us be more specific. Humans choose phigh at a rate of roughly 30%
(light blue segment on the left) and, accordingly, plow at 70% (dark blue
segment). Due to the high degree of coordination in markets, outcomes
labeled 0 (“all plow”) and 3 (“all phigh”) result most frequently. If the
coordination in markets fails, outcomes 1 (“one phigh, two plow”) and 2
(“two phigh, one plow”) result. The stream from the gray outcome boxes
then indicates how humans decided conditional on outcome. Their own
t − 1 decision can be identified by the color (light blue for phigh and dark
blue for plow).

The algorithm always chooses phigh if both competitors previously chose
phigh—how do humans behave here? Overall, it turns out human partici-
pants are also highly likely to play phigh (92.7%). But there are substantial
differences when the own prior choice is taken into account. Provided that
they themselves previously played phigh, human subjects almost always play
phigh again (99.1%).28 When we look at the human subjects who played
plow while both their competitors chose phigh (“two phigh, one plow”), we
see that roughly 29.3% cooperate, whereas the algorithm would play 100%
phigh here, too.

Differences between humans and the algorithm also become apparent
in markets with mixed outcomes where one competitor chose phigh and
the other one plow in t − 1. The probability that the algorithm will play

27See in A.6 of the appendix, where we provide the same analysis for the individual
treatments. Differences between treatments are minor and insignificant. We dropped
the data from period 20 on because we are not specifically interested in the end-game
behavior humans exhibit.

28In 26 out of 3,007 observations, these subjects chose plow, which is too little to be
visible in Figure 3.
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Figure 3: Alluvial flow diagram of choices by human subjects (all su-
pergames,periods 1 to 19).

cooperatively is 50%, whereas that of the human subjects is only 26.2%.
Again, Figure 3 shows the differences between subjects who played phigh

previously and those who chose plow.29 The cooperatively playing subjects
stuck to their strategy with a probability of 61.2%. But such attempts
to establish collusive conduct is hampered by the behavior of competitive
rivals who rarely choose the high price (9.8%).

How about the potentially negative effect of the algorithm when both
rival firms chose plow previously? In this case, the algorithm would never
choose phigh. But this does not differ much for human subjects who coop-
erate with 3.7 %. Conspicuously, the cooperative playing subjects continue
their strategy with a relatively high probability (41.9%), while the compet-
itive rivals play p high only in very few cases (1.7%).

Overall, the probability of successful collusion, irrespective of the pre-
vious market outcome, is higher in Algorithm (27.4%) than in Human
treatments (18.3%). The algorithm is less cooperative than the human

29For two-player prisoner’s dilemma experiments, Breitmoser (2015) suggests that sub-
jects play a “semi-grim” strategy, such that subjects randomize across choices regardless
of their own previous choice.
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Figure 4: Profits in percent above Nash (periods 6 to 19).

subjects when it comes to attempts to establish a collusive outcome, but
much more cooperative than subjects who chose plow before. It seems that
the human subjects rarely modify their strategy, trying instead to avoid a
change in their price decision.

5.5 Profits

If the algorithm treatments exhibit more cooperation, this suggests that
all firms benefit in terms of higher profits. As we see more cooperation,
the mean profits in Algorithm are actually higher than in Human , so
subjects earn more if an algorithm is present. In Appendix A.3, we analyze
this systematically. The positive effect on profits is significant in the third
supergame (linear probability model, p < 0.05).

By distinguishing between humans and algorithms, we can analyze who
benefits most from the presence of the algorithm. Figure 4 measures profits
relative to static Nash earnings (0%) and to perfect collusion (100%).30

30Formally, the index in Figure 4 is defined as (observed profit −
Nash profit)/(collusive profit − Nash profit).
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We see that subjects equipped with an algorithm earn substantially less
than their competitors in every supergame. Taking all supergames into
account, the difference is statistically significant (p < 0.01).31 Although
the algorithm helps to increase the group’s profit, it performs significantly
worse than their competitors. This suggests a coordination problem in that
no firm wants to adopt the algorithm first.

Result 6. Profits are significantly higher in the Algorithm treatments
compared to the Human treatments. In the Algorithm treatments, partic-
ipants represented by an algorithm earn significantly less than participants
who decide themselves for their firm.

6 Conclusion

In this paper, we analyze the impact of algorithms on collusion in hybrid
markets where humans interact with algorithms. The analysis of human-
computer interaction is important because most markets in the field are
heterogeneous and firms cannot be sure of whether their opponents are us-
ing algorithms for their pricing decision, nor do they know which type of
algorithm competitors might use.32 A recent literature (British Competi-
tion and Markets Authority, 2018; Musolff, 2021; Wieting and Sapi, 2021)
investigates relatively simple algorithms and suggest such straightforward
pricing rules are (at least currently) empirically dominant in the field and
may actually increase the risk of tacit collusion. This raises the question
of algorithms’ impact in hybrid markets where they interact with humans.

We study these issues in experimental markets with three firms where
one firm is equipped with an algorithm. The algorithm, if present, plays
proportional tit-for-tat (Axelrod, 1984; Hilbe et al., 2015), a simple and
transparent strategy. We further vary whether the human participants

31Appendix A.3 provides the results of a linear probability regression where the depen-
dent variable is the profit subjects earn from period 6 to 19. Our explanatory variable
for the type of player is role. The negative effect of role is also significant in the first
(p < 0.1) and the third supergame (p < 0.001). The effect is not significant for the
second supergame.

32Explicitly communicating and agreeing on the use of algorithms has been penalized
as a violation of cartel law. See Poster Cartel case: US Department of Justice, Apr. 6,
2015, Press Release no. 15-421 and British Competition and Markets Authority, Aug.
12, 2016, Case 50223.
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know (in a non-deceptive way) about the presence of the algorithm. Par-
ticipants of the experiments played three indefinitely repeated games.

We report three main sets of results. First, regarding the competitive-
ness of markets, we find that our algorithm significantly increases prices.
This finding confirms the anti-competitive potential algorithms have, even
when interacting with humans. Moreover, it suggests that the collusive
effects of algorithms are unlikely to be fully mitigated by the presence of
humans. In other words, we cannot rely on humans to discipline the collu-
sive behavior of algorithms.

Our second finding concerns participants’ expectations when they in-
teract will an algorithm. Largely, it appears that expectations (the
(un)certainty that an algorithm is around) do not significantly affect pric-
ing. Intriguingly, when we elicit post-experiment beliefs about the nature
of the co-players, participants are significantly more inclined to believe an
algorithm was present when this was not the case. Specifically, humans ap-
pear to associate miscoordination with algorithmic play whereas, in fact,
the algorithm more frequently leads to successful cooperation. These re-
sults are broadly consistent with findings on algorithm aversion (Dietvorst
and Bharti, 2020; Dietvorst et al., 2016, 2015).

A third set of findings concerns the profitability of employing an algo-
rithm. We find that the firms for which the algorithm decided earn signif-
icantly less profit. This suggests that firms want their rivals to adopt the
algorithm first: Firms face a coordination problem when it comes to dele-
gating decisions to algorithms. Tacit collusion seems feasible, but requires
algorithms with a certain degree of cooperative commitment. Therefore, a
firm must be willing to accept setup costs. That said, this effect could be
moderated by other benefits of algorithms, such as a higher frequency of
pricing or a better demand forecasting (Brown and MacKay, 2022; Miklós-
Thal and Tucker, 2019).

Our results suggest promising topics for future research. One possible
extension would be to not impose the use of the algorithm exogenously, but
let subjects choose whether they want to employ algorithms. Algorithm
aversion may preclude this, but demonstrating the force of algorithms may
cure this reluctance. In addition, the aforementioned coordination problem
might be significant. One may further consider experiments where subjects
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decide which algorithm to employ.
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A Appendix

A.1 Model

Setup

Consider a three-player game where players’ action sets are the prices
{phigh, plow}. With pi denoting player i’s price, her payoff is generally de-
noted by πi(pi, pj, pk), i, j, k ∈ {1, 2, 3} where pj and pk are the prices of
the rivals of player i, and i ̸= j, i ̸= k and j ̸= k and where the identity
of the rival players do not matter, that is, πi(pi, pj, pk) = πi(pi, pk, pj). We
further define the following shortcut notation:

πc = πi(phigh, phigh, phigh) = 800

πs = πi(phigh, plow, plow) = πi(phigh, plow, phigh) = 0

πd = πi(plow, phigh, phigh) = 1440

πf = πi(plow, plow, phigh) = 720

πn = πi(plow, plow, plow) = 480

The numerical entries are those of the experiment and they are also repro-
duced in Table 1.

We now analyze an infinitely repeated version of this game. Let time
be indexed by t = 0, ..., ∞. Future periods are discounted by the factor δ.

Repeated-game incentive constraint

Suppose the three players attempt to establish collusion on the high price,
each following a ‘grim-trigger’ strategy (GT ). When pursuing a GT strat-
egy, a player chooses phigh in t = 0 and keeps charging phigh as long as
no player has played plow in any previous period. If any player deviates
in t, a GT player charges plow, the static Nash equilibrium price, from
t + 1, ..., ∞. Expected payoffs are as follows. If player i chooses phigh in
t = 0, she receives πc from t = 0, ..., ∞. If she defects with plow, she obtains
πd in t = 0 and, since she triggers the punishment path, πn in t = 1, ..., ∞.
Accordingly, playing GT is a subgame-perfect Nash equilibrium (SGPNE)
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if

πc

1 − δ
≥ πd + δπn

1 − δ

δ ≥ πd − πc

πd − πn
= 2

3 ≡ δGT (2)

where the subscript GT indicates that all three participants are GT players,
there is no algorithm.

Suppose now there are two players attempting to establish collusion
via GT and the third player is an algorithm. The algorithm is committed
to playing pTFT (as defined above) and will thus not deviate from this
strategy.33 We analyze the incentives of a GT player to deviate. If a GT

player chooses phigh, she receives πc in t = 0, ..., ∞ in equilibrium. The
profit from a one-off deviation is πd, as before. The punishment payoff in
t = 1 does change, however. If player i deviates in t = 0, the price vector
reads (plow, phigh, phigh). This prompts the pTFT algorithm to cooperate
with 50% in t = 1, so the price vectors (plow, plow, phigh) and (plow, plow, plow)
and corresponding payoffs πf and πn, respectively, are equally likely. From
t = 2 on, the two players and the algorithm choose plow for the rest of the
game. Thus, the incentive constraint becomes

πc

1 − δ
≥ πd + δ

(
πf + πn

2

)
+ δ2πn

1 − δ

solving for δ for the values employed in the experiment34

δ ≳ 0.69 ≡ δpT F T (3)

where the subscript pTFT indicates that one of the three players is the
pTFT algorithm.

To complete the proof for the subgame-perfectness of GT in the pres-
ence of the algorithm, consider additional out-of-equilibrium histories.35 In

33Tit-for-tat strategies are often not subgame-perfect (for two-player cases, see Os-
borne (2006)). In our case, the algorithm itself will not deviate, as it is programmed to
play pTFT , even if this is not a best response in somes.

34A closed-form solution with general payoffs can be obtained, but is not informative.
35In the presence of the pTFT algorithm, meeting the incentive constraint (3) is

generally not sufficient for GT to be subgame-perfect.
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histories ending in subgames where at least one player chooses plow and
at least one player selects the high price, the GT players will choose plow,
whereas the pTFT algorithm will cooperate in t+1 with at least 50%.36 A
possible one-off deviation for a GT player would be to cooperate in the next
period. But since the second GT player will defect in t+1, such a deviation
would yield zero payoff , whereas sticking to GT (by defecting from period
t + 1 on) would yield (at least) πn. It follows that GT is subgame-perfect
in the presence of the algorithm, provided (3) is met.

We summarize by comparing (2) and (3):

Proposition 1: The minimum discount factor required for collusion to be
a SGPNE is lower for three GT players compared to two GT players and
one pTFT algorithm: δGT < δpT F T .

The intuition behind Proposition 1 is straightforward. GT and pTFT are
both cooperative strategies, but pTFT is more forgiving and willing to
cooperate with a positive probability even when (exactly) one rival player
defected in t−1. This raises the payoffs of a GT player after a defection and,
accordingly, increases the minimum discount factor required for successful
collusion.37

Strategic risk

The inequalities (2) and (3) are necessary conditions for collusion on phigh to
be subgame-perfect. Other equilibria obviously exist as well. For example,
all players always charging plow is also a SGPNE of the repeated game, with
and without the presence of the pTFT algorithm. The inequalities (2) and
(3) do not reflect the coordination problems players face in the presence of
multiple equilibria.

36The set of subgames where at least one player deviates and at least one player
cooperates includes (phigh, plow, · ), (plow, phigh, · ) and (phigh, phigh, plow). In the
latter case, the pTFT algorithm cooperates 100% in t + 1. In two further possible
subgames ((plow, plow, phigh) and (plow, plow, plow)), all players defect in t + 1, ensuring
GT is subgame-perfect.

37Nevertheless, results from experiments with self-learning algorithms suggest that
these algorithms learn to cooperate even after deviations and therefore pursue a more
forgiving strategy than GT , see Calvano et al. (2020, section IV. C.).
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Taking strategic risk into account is especially important when analyz-
ing algorithms. The algorithm is committed to a strategy, whereas humans
are not. That is, the algorithm reduces strategic uncertainty. Merely to
focus on incentives in a given collusion equilibrium and to ignore strategic
risk would imply that we largely miss the collusive impact algorithms may
have.

To deal with strategic uncertainty, a growing literature on repeated
prisoner’s dilemmas (Blonski et al., 2011; Blonski and Spagnolo, 2015; Dal
Bó and Fréchette, 2011, 2018; Green et al., 2015) borrows from Harsanyi
and Selten’s (1988) concept of risk dominance which can easily be applied
to symmetric coordination games with two strategies. A strategy is risk-
dominant if it is a best response to the other players mixing with equal
probability between the two strategies.

The approach can be adapted to repeated games. We follow Blonski
et al. (2011), Blonski and Spagnolo (2015), Dal Bó and Fréchette (2011,
2018), and Green et al. (2015) in focusing on a simplified version of the
game, the choice between two repeated-game strategies. We henceforth
analyze the decision between the collusive GT and the non-cooperative
‘always defect’ strategy (AD). That is, players’ action sets are now the
repeated-game strategies GT and AD.38 Provided (2) and (3), respectively,
hold, all players playing GT and all players playing AD are equilibria of
this two-action game. Increasing δ reduces the riskiness of GT , and we
solve for a new critical discount factor, δ∗, such that playing GT is the best
response given the other players randomize with equal probability between
the two strategies GT and AD. We then investigate how the presence of
an algorithm affects δ∗.

Consider three players choosing between GT and AD and expecting
their competitors to play GT or AD with equal probability. When playing
GT , there are two contingencies for the profit of player i in period t = 0:
Provided the other two players also play GT (which happens with a prob-
ability of 1/4), i obtains πc. If at least one other player defects (probability
of 3/4), i obtains πs = 0 in period t = 0. If all players including i play GT

38For the simplified version of the game with only two repeated-game strategies (GT
and AD), Blonski and Spagnolo (2015) show that any collusive equilibrium is risk-
dominant if GT is risk-dominant.
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in t = 0, i also obtains πc in all future periods t = 1, ..., ∞. If at least one
player defects in t = 0, i gets πn in periods t = 1, ..., ∞. Thus, player i’s
expected payoff from playing GT is

1
4

(
πc

1 − δ

)
+ 3

4

(
πs + δπn

1 − δ

)

If player i instead plays AD, there are three possibilities. If both other
players cooperate in t = 0 (which happens with a probability of 1/4), i

obtains πd. If one rival player cooperates and the other defects (which
happens with a probability of 1/2), i obtains πf . When both rival players
defect (probability of 1/4), i obtains πn. In all three cases, i obtains πn in
t = 1, ..., ∞. Player i’s expected payoff is

πd

4 + πf

2 + πn

4 + δπn

1 − δ

Taking the difference in expected profits of GT and AD and solving for
δ, we find that GT has a higher expected payoff than AD, if and only if

δ ≥ πd + 2πf − 3πs + πn − πc

πd + 2πf − 3πs
= 8

9 ≈ 0.89 ≡ δ∗
GT (4)

where δ∗ ∈ (0, 1) denotes the critical discount factor in the presence of
strategic risk and δ∗. GT indicates that all three players are (potential)
GT players. Note that δ∗

GT > δGT strictly. We further point out that the
payoffs πs and πf play a role here – which is not the case for δ.

Now, one of the three market participants is an algorithm committed
to playing pTFT , whereas the other two participants are rational players
as before. We analyze the choice of these two players between GT and
AD. The two players are expected to play GT and AD with equal proba-
bility. Suppose player i plays GT . Then there are only two contingencies:
the other player plays either GT or she plays AD. Expected profits are
accordingly

1
2

(
πc

1 − δ

)
+ 1

2

(
πs + δ

2(πf + πn) + δ2 πn

1 − δ

)
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If player i plays AD, she gets

1
2

(
πd + δ

2
(
πf + πn

)
+ δ2πn

1 − δ

)
+ 1

2

(
πf + δπn

1 − δ

)

We find that GT has a higher expected payoff if

δ ≥ πd + πf − πc − πs

πd + πf − πn − πs
= 17

21 ≈ 0.81 ≡ δ∗
pT F T (5)

Comparing (4) and (5), we obtain:

Proposition 2: The minimum discount factor required in the presence of
strategic uncertainty is higher for three GT players compared to two GT

players and one pTFT algorithm: δ∗
GT > δ∗

pT F T .39

Whereas propositions 1 and 2 imply contradicting effects, the existing
experimental evidence overwhelmingly suggests that the minimum discount
factor that takes strategic risk into account (δ∗) has more explanatory
power than the standard minimum discount factor (δ). This is shown in
the meta-study by Dal Bó and Fréchette (2018). Furthermore, Blonski
et al. (2011) highlight the case where, for pairs of treatments, δ and δ∗

“change in opposite directions.” This is the case in our experiment: the
pTFT algorithm increases δ, but reduces δ∗. The first experimental result
in Blonski et al. (2011) is that, in this case, “the frequency of cooperation
changes as predicted by changes in δ∗, contradicting predictions based on
δ” (Blonski et al., 2011, p. 185).40 Accordingly, based on Proposition 2,
we expect that, ceteris paribus, the Algorithm treatments will be more
collusive than their Human counterparts.

39The reader can verify that δ∗
GT > δ∗

pT F T not only for our experimental parameters,
but in general: Note that both the numerator and the denominator of δ∗

GT exceed their
δ∗

pT F T counterparts by πf + πn − 2πs > 0, hence are increasing δ∗
GT .

40Their analysis is often based on what they label as “class 2” data. In that class, the
actual discount factor is above δ, but below δ∗, as is the case in our experiment.
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A.2 Treatment ranking as explanatory variable

Supergame 1 Supergame 2 Supergame 3 All

treatment ranking 0.00432 -0.0556*** -0.0879** -0.0439**
(0.0217) (0.0203) (0.0342) (0.0191)

periods 1 to 5 0.0867*** 0.129*** 0.116*** 0.110***
(0.0234) (0.0177) (0.0199) (0.0133)

periods 20 to 25 -0.0524*** -0.0522*** -0.129*** -0.0821***
(0.0159) (0.0160) (0.0292) (0.0108)

supergame 0.0968***
(0.0216)

Constant 0.145** 0.438*** 0.566*** 0.280***
(0.0568) (0.0447) (0.103) (0.0521)

Obs. 7,416 6,180 6,489 20,085
R2 0.016 0.033 0.062 0.065

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Impact of treatment ranking, periods 6 to 19, linear probability
model.
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A.3 Profits
Supergame 1 Supergame 2 Supergame 3 All

algorithm 62.63 116.0 832.5*** 872.5*** 1,348** 1,393** 714.8*** 761.2***
(274.8) (274.6) (300.2) (303.6) (600.2) (599.1) (265.9) (266.5)

certain 491.2 491.2 249.6 249.6 289.1 289.1 351.6 351.6
(539.1) (539.1) (385.1) (385.1) (591.3) (591.3) (402.5) (402.5)

algorithm × certain -330.3 -330.3 -770.9* -770.9* -857.9 -857.9 -636.3 -636.3
(633.9) (633.9) (454.0) (454.0) (905.8) (905.8) (538.5) (538.5)

role -160* -120 -133.3*** -139.1***
(91.29) (78.87) (14.63) (50.78)

supergame 521.1*** 521.1***
(106.7) (106.7)

Constant 6,989*** 6,989*** 7,590*** 7,590*** 7,578*** 7,578*** 6,867*** 6,867***
(188.7) (188.7) (252.8) (252.8) (285.9) (285.9) (112.3) (112.3)

Obs. 7,416 7,416 6,180 6,180 6,489 6,489 20,085 20,085
R2 0.014 0.016 0.022 0.023 0.059 0.059 0.065 0.066

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 8: Total profits, periods 6 to 19, linear probability model.
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Additional Material

A.4 Session details

Date Session # Part. # Markets Laba COVID-19

August 28, 2019 3.1 21 7 Düsseldorf 0
September 11, 2019 4.1 24 8 Düsseldorf 0
September 11, 2019 3.2 21 7 Düsseldorf 0
September 12, 2019 4.2 18 6 Düsseldorf 0

March 04, 2020 3.3 24 8 Bonn 0
March 05, 2020 1.1 21 7 Bonn 0
March 05, 2020 1.2 21 7 Bonn 0
March 05, 2020 2.1 30 10 Bonn 0
July 06, 2020 2.2 18 6 Düsseldorf 1

August 05, 2020 1.3 18 6 Düsseldorf 1
September 02, 2020 2.3 15 5 Düsseldorf 1
September 22, 2020 4.3 18 6 Bonn 1
October 13, 2020 4.4 18 6 Bonn 1
October 14, 2020 2.4 12 4 Bonn 1
October 14, 2020 3.4 18 6 Bonn 1
October 16, 2020 1.4 12 4 Düsseldorf 1

Table 9: Session details
aAs a show-up fee, the participants received 5 euros in Bonn and 4 euros in Düsseldorf.

During the COVID-19 pandemic, the fee was increased to 8 euros in Düsseldorf from
mid-July 2020 on. This in line with Schulz et al. (2019), who find that moderately
different show-up fees had no influence on the behavior of the participants.
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A.5 Overview using data from all periods

Figure 5: Cooperation rates over time (all periods).

Supergame 1 Supergame 2 Supergame 3 All

Human U 0.126 0.241 0.246 0.200
(0.331) (0.428) (0.431) (0.400)

Algo U 0.130 0.412 0.502 0.337
(0.337) (0.492) (0.500) (0.473)

Human C 0.226 0.310 0.293 0.273
(0.418) (0.463) (0.455) (0.446)

Algo C 0.174 0.350 0.404 0.302
(0.379) (0.477) (0.491) (0.459)

Standard deviations in parentheses.

Table 10: Average cooperation rates (all periods).
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A.6 Data of human subjects only
Supergame 1 Supergame 2 Supergame 3 All

Human U 0.123 0.221 0.218 0.187
(0.328) (0.415) (0.413) (0.390)

Algorithm U 0.112 0.395 0.504 0.337
(0.316) (0.489) (0.500) (0.473)

Human C 0.233 0.275 0.277 0.262
(0.423) (0.447) (0.448) (0.440)

Algorithm C 0.159 0.297 0.378 0.278
(0.366) (0.457) (0.485) (0.448)

Standard deviations in parentheses.

Table 11: Average cooperation rates (human subjects, periods 6 to 19).

Rival behavior in t − 1
Two Low High/Low Two High Total

Human U 0.0401 0.267 0.908 0.207
(0.196) (0.443) (0.289) (0.405)

Algorithm U 0.0291 0.238 0.953 0.343
(0.168) (0.427) (0.211) (0.475)

Human C 0.0405 0.258 0.948 0.278
(0.197) (0.438) (0.221) (0.448)

Algorithm C 0.0347 0.281 0.886 0.301
(0.183) (0.450) (0.318) (0.459)

Total 0.0370 0.262 0.927 0.276
(0.189) (0.440) (0.260) (0.447)

Standard deviations in parentheses.

Table 12: Average cooperation rates with respect to the previous choices
of rivals 1 and 2 (human subjects, period 6-19).
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A.7 Treatments effect with probit model

Supergame 1 Supergame 2 Supergame 3 All

algorithm -0.0907 0.0284 0.304* 0.490** 0.509** 0.704** 0.258 0.436**
(0.223) (0.293) (0.156) (0.203) (0.235) (0.311) (0.169) (0.172)

certain 0.294 0.406 0.00233 0.210 -0.0760 0.147 0.0610 0.257
(0.224) (0.356) (0.149) (0.258) (0.237) (0.360) (0.166) (0.274)

algorithm × certain -0.220 -0.378 -0.400 -0.357
(0.491) (0.296) (0.501) (0.337)

periods 1 to 5 0.320*** 0.321*** 0.349*** 0.350*** 0.309*** 0.311*** 0.320*** 0.322***
(0.0968) (0.0973) (0.0493) (0.0492) (0.0578) (0.0572) (0.0420) (0.0410)

periods 20 to 25 -0.252*** -0.254*** -0.160*** -0.163*** -0.395*** -0.398*** -0.322*** -0.325***
(0.0841) (0.0841) (0.0555) (0.0562) (0.0798) (0.0806) (0.0483) (0.0476)

supergame 0.300*** 0.301***
(0.0647) (0.0633)

Constant -1.122*** -1.184*** -0.687*** -0.792*** -0.625*** -0.737*** -1.103*** -1.206***
(0.175) (0.169) (0.159) (0.185) (0.186) (0.183) (0.147) (0.119)

Obs. 7,416 7,416 6,180 6,180 6,489 6,489 20,085 20,085
Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 13: Treatment effects, probit model.

44



A.8 Robustness check for impact of lab location and COVID-19 pandemic

Supergame 1 Supergame 2 Supergame 3 All

algorithm -0.0225 -0.00359 0.108** 0.178* 0.185** 0.255 0.0847 0.136
(0.0528) (0.107) (0.0526) (0.106) (0.0813) (0.196) (0.0516) (0.109)

certain 0.0706 0.0346 0.000116 0.0712 -0.0292 0.0457 0.0166 0.0494
(0.0542) (0.114) (0.0515) (0.138) (0.0833) (0.219) (0.0523) (0.132)

algorithm × certain 0.0174 -0.138 -0.142 -0.0821
(0.169) (0.168) (0.294) (0.176)

coronaa -0.0277 0.0177 -0.00476 -0.00634
(0.0928) (0.0823) (0.165) (0.0881)

laboratoryb 0.0368 -0.0110 0.0182 0.0161
(0.0747) (0.0733) (0.131) (0.0730)

periods 1 to 5 0.0867*** 0.0896*** 0.129*** 0.124*** 0.116*** 0.116*** 0.110*** 0.110***
(0.0234) (0.0236) (0.0177) (0.0175) (0.0199) (0.0210) (0.0133) (0.0135)

periods 20 to 25 -0.0524*** -0.0512*** -0.0522*** -0.0534*** -0.129*** -0.134*** -0.0821*** -0.0842***
(0.0159) (0.0161) (0.0160) (0.0176) (0.0292) (0.0306) (0.0108) (0.0114)

supergame 0.0968*** 0.105***
(0.0216) (0.0206)

Constant 0.133*** 0.114 0.245*** 0.208** 0.268*** 0.224 0.120*** 0.0795
(0.0405) (0.106) (0.0518) (0.102) (0.0625) (0.165) (0.0401) (0.101)

Obs. 7,416 7,128 6,180 5,940 6,489 6,237 20,085 19,305
R2 0.025 0.025 0.029 0.034 0.057 0.064 0.062 0.074

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 14: Laboratory location and COVID-19 effects, linear probability model.
acorona = 1 if the session was conducted under hygiene rules of the pandemic.
blaboratory = 1 if the sessions was run in Bonn.
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A.9 Instructions ( Uncertain treatments)

Welcome to the experiment

Thank you for your participation in this experiment. Please read the in-
structions carefully. For your participation in today’s experiment, you will
receive 5 euros. During the experiment, you will have the opportunity
to earn an additional amount of money. The additional amount will de-
pend on your decisions and the decisions of the other participants. A short
questionnaire will follow the experiment. From now on, please stop any
conversations with your neighbors. Turn off your cell phone and remove
everything from your table that you do not need for the experiment. If
you have any questions, please raise your hand and we will answer them
one-on-one.

Instructions

In this experiment, you will take the role of a firm in a market. Each
market consists of three firms. Each of the three firms is represented by
a human participant. All firms offer 24 units of a comparable good with
no cost of production, and with 24 consumers demanding one unit of the
good. Consumers’ willingness to pay for a good ranges from 1 to 100
ECU (Experimental Currency Units), where 1,000 ECU = 1 Euro. At the
beginning of each period, all firms have the option to set a high price (100
ECU) or a low price (60 ECU) for their good. The company which alone
has set the lowest price serves the entire demand. All other companies will
not sell any of their units. If several companies have set the same lowest
price, the demand is divided equally among them. The following three
examples illustrate the mechanism of the market:

Example 1

You are firm A and you decide to charge a high price for the units of your
good (100 ECU). Firm B makes the same decision, whereas C sets a low
price (60 ECU). Firm C now has the cheapest sales offer and will serve the
complete demand. Accordingly, firm C will earn (60 ECU ∗24 units sold
=) 1, 440 ECU. Firms A and B will not sell any units and will therefore
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Both
competitors
choose the
high price

One competitor chooses
the high price, the other
competitor chooses the

low price

Both
competitors
choose the
low price

You choose
the high price

(100 ECU)
800 ECU 0 ECU 0 ECU

You choose
the low price

(60 ECU)
1440 ECU 720 ECU 480 ECU

earn 0 ECU in this period.

Example 2

You are firm A and you decide to charge a low price for the units of your
good (60 ECU). Firms B and C make the same decision. Firms A, B, and
C have now all made the lowest sales offer and will each sell 1/3 of the
demand, thus 24/3 = 8 units of their goods. Accordingly, each firm will
earn (60 ECU ∗8 units sold =) 480 ECU.

Example 3

You are firm A and you decide to charge a high price for the units of your
good (100 ECU). Firms B and C make the same decision. Firms A, B,
and C have now all made the most favorable sales offer and will each sell
1/3 of the demand, thus 24/3 = 8 units of their goods. Accordingly, each
firm will earn (100 ECU ∗8 units sold =) 800 ECU. Thus, your earnings
depend on your own and the other firms’ pricing decisions. This results in
the following profit table for you:

After all the firms have made their choice, you will be informed about
the chosen prices of the other two firms and about your profit.

Periods and rounds

In total, you will play at least 20 periods with the other two firms. Random
chance will decide whether or not additional periods will be played in the
sequel. With a probability of 70% the round will continue with another
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period; with a probability of 30% the round will end. The round continues
until random chance determines the end. In each period of a round, you
will be playing with the same participants in a market. At the end of these
20 + x periods, all participants are randomly assigned to new markets and
a new round begins. The three participants in the new markets will then
stay together again for 20 + x periods.

In total, you will play three rounds of 20+x periods. After three rounds,
the experiment ends and a short questionnaire follows.

Market decisions by algorithms

In your markets, at least two participants decide for themselves the price
for which they want to sell their goods for their firm and are paid the
profit their firm makes in cash at the end of the experiment. With 50%
probability, the decisions for the third firm will also be made by
one participant. Also with 50% probability, the third firm will
be equipped with an algorithm in all rounds, which will make
the necessary pricing decisions for the participant. In this case,
the participant does not make any decisions but still gets paid in cash the
profit that her firm makes.

Payout

For your payout, one of the three rounds will be randomly selected. The
ECU earned there will be paid to you additionally in euros.
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