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Abstract

The paper studies effi cient public-good provision in a model with pri-
vate values whose distribution depends on a macro shock; conditionally on
this shock, values are independent and identically distributed. A gener-
alization of the Bayesian mechanism of d’Aspremont and Gérard-Varet is
shown to implement an effi cient provision rule with budget balance. How-
ever, first-best implementation and budget balance are incompatible with
a reqruirement of weak robustness whereby incentive compatibility of the
mechanism is independent of the stochastic specification within the class
of specifications defined by the structure of the model. Budget imbalances
with robust implementation are small if there are many participants, as
surplus from the Clarke-Groves mechanism converges to zero in probabil-
ity when the number of participants becomes large. In the limit, with a
continuum of agents, a first-best provision rule with equal cost sharing is
robustly incentive-compatible. In this limit, information about the macro
shock, which is the only thing that matters for public-good provision, can
be elicited without any effi ciency loss.

Key Words : Effi cient public-good provision, incomplete information,
conditionally independent private values, macro uncertainty, budget bal-
ance, weakly robust incentive compatibility.
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1 Introduction

This paper considers the scope for effi cient public-good provision with incom-
plete information when the participants’preferences depend on an unobserved
macro shock. Whereas in standard Bayesian models of public-good provision
under incomplete information the preference parameters of the different par-
ticipants are given by independent random variables, I assume that preference
parameters are conditionally independent and identically distributed given some
random variable ỹ, which represents a macro shock.
Macro uncertainty adds an important dimension to the information problem

in public-good provision. For suppose that a public good comes as a single
indivisible unit, say at a cost Kn when there are n participants, and let θ1, ..., θn
be the value of the public good to participants 1, ..., n. An effi cient provision rule
requires the public good to be provided if

∑n
i=1 θi > Kn and not to be provided

if
∑n
i=1 θi < Kn. Thus, if Kn takes the form Kn = n ·k, the question is whether

1
n

∑n
i=1 θi is greater or less than k. If the preference parameters θ1, ..., θn are

the realizations of independent and identically distributed random variables
θ̃1, ..., θ̃n, then, with a probability close to one, the average 1

n

∑n
i=1 θi will be

close to the expected value Eθ̃i if n is large. In this case, if Eθ̃i > k, the expected
effi ciency loss from a non-contingent decision to provide the public good will be
small; similarly, if Eθ̃i < k, the expected effi ciency loss from a non-contingent
decision not to provide the public good will be small.
In contrast, with macro uncertainty, the expected effi ciency loss from such

non-contingent decisions on public-good provision are non-negligible even if n
is large. If θ1, ..., θn are the realizations of random variables θ̃1, ..., θ̃n that
are conditionally independent and identically distributed given ỹ, then, with a
probability close to one, the average 1

n

∑n
i=1 θi will be close to the conditional

expectation E[θ̃1|ỹ] so an effi cient provision decision hinges on whether E[θ̃1|ỹ]
is greater or smaller than k. This question is nontrival even if n is large.
For models with conditionally independent and identically distributed char-

acteristics, the paper provides the following results. First, a straightforward
generalization of the incentive mechanism of d’Aspremont and Gérard-Varet
(1979) is shown to provide for effi cient public-good provision with ex post bud-
get balance. Like the mechanism of d’Aspremont and Gérard-Varet, this mech-
anism satisfies ex ante but not interim participation constraints. If interim
participation constraints were imposed, budget balance would be lost.1

Even without interim participation constraints, the incentive mechanisms
that provide for effi cient public-good provision with ex post budget balance are
not robust to changes in the stochastic specification. A further result of the
paper shows that effi cient public-good provision and ex post budget balance are
incompatible if incentive mechanisms must satisfy a weak robustness condition
requiring incentive compatible to be preserved when the probability distribution
of the aggregate shock or the mapping from aggregate shocks to conditional

1This conclusion follows by a straightforward extension of the argument given in Güth and
Hellwig (1986) for the case of independent private values.
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distributions of characteristics are changed.
However, budget imbalances from robust implementation of an effi cient pro-

vision rule can be small if the number n of participants is large.2 With a large
population, individual incentive compatibility conditions pose no problem for
the implementation of an effi cient provision rule through a robustly incentive-
compatible direct mechanism with budget balance.3

The assumption that participants’characteristics are not only conditionally
independent but also conditionally identically distributed is imposed for sim-
plicity. Without this additional assumption, the results of this paper would still
go through, but the notation and the analysis itself would be more complicated.
However, the assumption of conditionally independent and identically dis-

tributed preference parameters is of interest in iteself because it is equivalent
to the assumption that the preference parameters θ̃1, ..., θ̃n belong to an in-
finite sequence of exchangeable random variables, whose joint distribution is
unchanged under any permutation of their labels.4 Exchangeability reflects a
notion of anonymity, whereby players’ names are irrelevant for the relations
between them.5

In the following, Section 2 presents the model, Section 3 the results on
Bayesian implementation. Section 4 introduces the concept of weak robustness
and formulates the impossibility theorem stating that no mechanism can provide
for weakly robust implementation of effi cient public-good provision with budget
balance. Section 5 discusses the behaviour of budget imbalances with robust
implementation when the number of participants is large (though finite). Section
6 sketches the arguments for the limit economy with a continuum of participants.
All proofs are given in the Appendix.

2 Bayesian Implementation

Consider a model with n > 1 agents, one private good and one public good that
comes as a single indivisible unit. Assume that the installation of the public
good costs K units of the private good. If the public good is installed, all agents
enjoy it; there is no scope for individual exclusion and no problem of crowding.
Agent i obtains the net payoff

θi · q − ti, (2.1)

2This result extends and strengthens the analysis of Green and Laffont (1979). Focussing
on Clarke-Groves mechanisms, i.e. robust mechanisms that never run deficits, they show that,
as n goes out of bounds, the expected value of the budget surplus per capita goes to zero. For
such mechanisms, I show that the budget surplus itself goes to zero in probability.

3 In contrast, coalition incentive compatibility may preclude first-best implementation even
if the population is large. In a model with single-peaked preferences on a linearly ordered
space of outcomes, Hellwig (2021) shows that group strategy proofness, i.e., the dominant-
strategy version of coalition incentive compatibility, is obtained if and only if the mechanism
is equivalent to a combination of binary votes over neighbouring outcomes.

4See Diakonis and Freedman (1980), Hammond and Sun (2008).
5See Hellwig (forthcoming).
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where θi is a preference parameter for agent i, q ∈ {0, 1} is an indicator variable
showing whether the public good is installed or not, and ti is the agent’s payment
in units of the private good.
The preference parameter θi is the realization of a random variable θ̃i that

takes values in an interval [0, θ̄]. The preference parameters θ̃1, ..., θ̃n are assumed
to be conditionally independent and identically distributed given some random
variable ỹ that takes values in some separable metric space Y. I write F (·|ỹ) for
the (regular) conditional distribution of θ̃i given ỹ and G for the probability
distribution of ỹ.6 The marginal probability distribution of θ̃i,

F (·) =

∫
Y

F (·|y) dG(y), (2.2)

is assumed to have full support [0, θ̄].
The stochastic structure of the model, including the conditional distributions

F (·|y), y ∈ Y, and the probability distribution G, are assumed to be common
knowledge. In addition, each agent i is informed about the realization of his own
preference parameter θ̃i. The agent receives no additional information about the
other agents.
The allocation problem is to determine under which conditions the public

good is to be provided and under which conditions it is not to be provided. To
ensure that this problem is non trivial, I assume that

0 < K < nθ̄ (2.3)

so that there is some positive probability that benefits from the public good are
below per-capita costs for all agents and some positive probability that benefits
from the public good are above per-capita costs for all agents.
To take account of such information, the provision decision must depend on

the preference parameters of the participants. Since information about these
parameters is private, one must rely on incentive mechanisms to elicit it in an
incentive-compatible manner.
I consider incentive-compatible direct mechanisms. A direct mechanism is

given by functions q, t1, ..., tn with the interpretation that participants are asked
the values of their preference parameters and, for any vector (θ̂1, ..., θ̂n) of an-
nounced preference parameters, q(θ̂1, ..., θ̂n) ∈ {0, 1} is the level of public-good
provision and ti(θ̂1, ..., θ̂n) is the payment that the mechanism stipulates for
agent i when the announcement vector is (θ̂1, ..., θ̂n).

A direct mechanism is Bayesian incentive-compatible if, for each agent i,
truthtelling is a Bayes-Nash best response to truthtelling by the other agents.
Thus, for any θi, the report θ̂i = θi must maximize the agent’s net expected
payoff

θi ·Q(θ̂i, θi)− Ti(θ̂i, θi), (2.4)

where

Q(θ̂i, θi) :=

∫
Y

∫
[0,θ̄]

q(θ̂i,θ−i) dF
n−1(θ−i|y) dG(y|θi) (2.5)

6An example would be the specification Y =M([0, θ̄]) with F (·|ỹ) = ỹ.
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and

Ti(θ̂i, θi) :=

∫
Y

∫
[0,θ̄]

ti(θ̂i,θ−i) dF
n−1(θ−i|y) dG(y|θi) (2.6)

are the agent’s conditional expectations of q(θ̂i, θ̃−i) and ti(θ̂i, θ̃−i)) given that
θ̃i = θi; in these expressions Fn−1(·|y) denotes the n− 1-fold product of F (·|y)
and G(·|θi) denotes a conditional distribution for ỹ given that θ̃i = θi.

If G is a degenerate distribution that assigns all mass to some point ŷ ∈ Y,
one has F (·|ỹ) = F (·) almost surely, and the random variables θ̃1, ..., θ̃n are
actually independent. For this case, the following result is well known.7

Proposition 2.1 Fix ŷ ∈ Y and assume that G assigns all probability mass to
the singleton {ŷ}. If (q, t1, ..., tn) is a Bayesian incentive-compatible direct mech-
anism, then the associated functions Q1, ..., Qn and T1, ..., Tn are independent
of θ1, ..., θn and satisfy

Ti(θ̂i) = Ti(0) + θi ·Q(θ̂i)−
∫ θ̂i

0

Q(θ
′

i) dθ
′
i (2.7)

for all i and θ̂i, where

Qi(θ̂i) :=

∫
[0,θ̄]

q(θ̂i,θ−i) dF
n−1(θ−i|ŷ), (2.8)

Ti(θ̂i) :=

∫
[0,θ̄]

ti(θ̂i,θ−i) dF
n−1(θ−i|ŷ), (2.9)

and the function Q(·) is nondecreasing. Conversely, if q is any nondecreasing
function on [0, θ̄]n, a Bayesian incentive-compatible direct mechanism (q, t1, ..., tn)(ŷ)
is obtained by setting

ti(θ1, ..., θn|ŷ) = Ti(θi|ŷ) +
1

n
K · q(θ1, ..., θn)− 1

n

∫
K · q(θi,θ′−i) dFn−1(θ′−i|ŷ)

− 1

n− 1

∑
j 6=i

[
Tj(θj |ŷ)−

∫
Tj(θ

′
j |ŷ) dF (θ′j |ŷ)

]
(2.10)

+
1

n− 1

∑
j 6=i

1

n

[∫
K · q(θj ,θ′−j) dFn−1(θ′−j |ŷ)−

∫
K · q(θ̂) dFn(θ̂|ŷ)

]
,

for all i and all (θ1, ..., θn), where

Ti(θ̂i|ŷ) = Ti(0|ŷ) + θi ·Qi(θ̂i|ŷ)−
∫ θ̂i

0

Q(θ
′

i|ŷ) dθ′i (2.11)

and

Qi(θ̂i|ŷ) :=

∫
[0,θ̄]n−1

q(θ̂i,θ
′
−i) dF

n−1(θ′−i|ŷ) (2.12)

for all i and all θ̂i.
7See, e.g., Proposition 3.3 of Güth and Hellwig (1986).
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For the general case of conditionally independent and identically distributed
private values, i.e., for arbitrary G, the following result provides a straightfor-
ward extension of the second part of Proposition 2.1.

Proposition 2.2 Let F (·|y), y ∈ Y, and G be any distribution on Y . If q is
any nondecreasing function on [0, θ̄]n, a Bayesian incentive-compatible direct
mechanism (q, t1, ..., tn) is obtained by setting

ti(θ1, ..., θn) =

∫
Y

ti(θ1, ..., θn|ŷ) dG(ŷ) (2.13)

for all i and all (θ1, ..., θn), where ti(θ1, ..., θn|ŷ) is given by (2.10). The associ-
ated functions Qi and Ti satisfy

Qi(θ̂i, θi) =

∫
Y

Q(θ̂i|ŷ) dG(ŷ|θi) (2.14)

and

Ti(θ̂i, θi) =

∫
Y

T (θ̂i|ŷ) dG(ŷ|θi) (2.15)

for all i, θ̂i, and θi, where Qi(θ̂i|ŷ) and Ti(θ̂i|ŷ) are given by (2.12) and (2.11).

Proposition 2.2 generalizes the second part of Proposition 2.1 to allow for
aggregate uncertainty, represented by the random variable ỹ. For the first part
of Proposition 2.1, such a generalization is not available because some Bayesian
incentive-compatible mechanisms do not admit integral representations along
the lines of (2.7); for examples, see Crémer and McLean (1988), McAfee and
Reny (1992), or Kosenok and Severinov (2008).

3 First-Best Implementation

For a result on effi cient implementation, Proposition 2.2 is all that is needed. A
public-good provision rule q is said to be first-best if, for each vector (θ1, ..., θn) ∈
[0, θ̄]n of preference parameters, the provision level q(θ1, ..., θn) maximizes the
aggregate surplus

n∑
i=1

θi · q −K · q. (3.1)

Under a first-best provision rule, the provision level q(θ1, ..., θn) is obviously
nondecreasing in θ1, ..., θn. Because q(·) is nondecreasing, Proposition 2.2 char-
acterizes a Bayesian incentive-compatible direct mechanism that implements
q(·).
The following result uses this characterization to generalize the finding of

d’Aspremont and Gérard-Varet (1979) that Bayesian implementation of a first-
best public-good provision rule is compatible with budget balance. A mechanism
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satisfies budget balance, if the payment functions t1, ..., tn are specified so that
the balanced-budget condition

n∑
i=1

ti(θ1, ..., θn) = K · q(θ1, ..., θn) (3.2)

holds for all (θ1, ..., θn) ∈ [0, θ̄]n.

Proposition 3.1 Let G be any distribution on Y . If q is a first-best public-good
provision rule, there exists a Bayesian incentive-compatible direct mechanism
that implements q and satisfies budget balance.

Because of budget balance, the sum of ex ante net expected payoffs of the
different participants satisfies

n∑
i=1

∫
[θi · q(θ1, ..., θn)− ti(θ1, ..., θn)] dFn(θ|ŷ) dG(ŷ)

=

∫ [ n∑
i=1

θi −K
]
· q(θ1, ..., θn) dFn(θ|ŷ) dG(ŷ). (3.3)

This expression is strictly positive because, for a first-best provision rule q,
the integrand is nonnegative with probability one and positive with positive
probability. With a suitable symmetry property of the contribution functions
t1, ..., tn, the ex ante net expected payoffs of the different participants must all
be the same and must have the same sign as the sum of ex ante net expected
payoffs over all participants. In this case, acceptance of the incentive mechanism
(q, t1, ..., tn) in Proposition 3.1 is ex ante individually rational.

However, acceptance of the incentive mechanism (q, t1, ..., tn) in Proposition
3.1 is not interim individually rational for all agents. This result follows from
a straightforward extension of Proposition 5.4 in Güth and Hellwig (1986).8

First-best implementation with interim individual rationality can be achieved
if budget balance is not required. For suppose that, instead of (2.10), the pay-
ment functions t1, ..., tn satisfy (2.13), as well as

ti(θi,θ−i|ŷ) = Ti(θi|ŷ)

and
Ti(0|ŷ) = 0

for all i, θi, θ−i, and ŷ. Suppose also that Ti(θi|ŷ) is given by (2.11), with Qi(·|ŷ)
given by (2.12) and the first-best provision rule q. The resulting mechanism is
easily seen to implement q. Moreover, the interim expected net payoff (2.4)

8Similar results are also given by Rob (1988) and Mailath and Postlewaite (1990). All
these results can be interpreted as variations of the impossibility theorem of Myerson and
Satterthwaite (1983).
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of any agent i with preference parameter θi under this mechanism is at least
equal to θi ·Q(0, θi)− Ti(0, θi), the expected net payoff from reporting θ̂i = 0,
which is nonnegative because θi · Q(0, θi) ≥ 0 and Ti(0, θi) = 0. However, this
mechanism violates budget balance; it even violates the ex ante budget balance
condition∫ [ n∑

i=1

ti(θ1, ..., θn)−K · q(θ1, ..., θn)

]
dFn(θ|ŷ) dG(ŷ) = 0.

Interim individual rationality and incentive compatibility require some of the
benefits of public—good provision to agents with high public-good valuations to
be left with the participants so that these high valuations cannot fully be relied
on for contributions to costs. As in other contexts, the information rents that
are thus induced create a conflict between effi ciency and budget balance. Such
an arrangement is only possible if an outside party is willing to cover the deficit.
With correlated characteristics of the different particpants, for many speci-

fications of the model,9 one can use the devices of Crémer and McLean (1988),
or McAfee and Reny (1992), to provide for effi cient public-good provision with
interim participation constraints and ex ante budget balance. Whether such
mechanisms can also be designed to satisfy ex post budget balance, i.e. condi-
tion (3.2), is an open question.10 In the following, I do not impose individual
rationality constraints.

4 An Impossibility Theorem for Weakly Robust
Implementation

The Bayesian approach to implementation has been criticized because it relies
on information about the beliefs that agents form about the other agents’pref-
erence parameters given their own preference parameters. The assumption that
this information is available to the mechanism designer is highly implausible.
Several authors have therefore proposed robustness requirements for incentive
mechanisms.11

A direct mechanism (q, t1, ..., tn) is said to be robustly incentive-compatible
if it is Bayesian incentive-compatible for all priors Φ on [0, θ̄]n. Incentive com-

9The word "many" refers to the findings of Chen and Xiong (2013) and Gizatulina and
Hellwig (2017) that the set of specifications allowing the use of Crémer-McLean mechanisms for
preference elicitation without information rents is generic ("large") in a topological sense. The
question of genericity must be distinguished from the question of robustness that is considered
in the next section. In fact, the Crémer-McLean mechanisms for preference elicitation tend
to be highly nonrobust.
10One easily verifies that, because of the special structure with conditionally independent

and identically distributed characteristics, the suffi cient condition that Kosenok and Severi-
nov (2008) give for first-best implementation with ex post budget balance is not satisfied
here. Whereas Kosenok and Severinov (2008) refer to this condition as being necessary as
well as suffi cient, the necessity result comes with a quantifier requiring balanced-budget im-
plementability for all utility specifications.
11See Ledyard (1978), Bergemann and Morris (2005), Börgers and Smith (2014).
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patibility of such a mechanism is independent of the conditional distributions
that determine agents’beliefs about the characteristics of other agents.
In the present context, robust incentive compatibility is too strong a re-

quirement. Many priors Φ on [0, θ̄]n do not have conditionally independent
and identically distributed characteristics of agents. As mentioned in the in-
troduction, this property is implied by the assumption that θ̃1, ..., θ̃n belong
to an infinite sequence of exchangeable random variables. If this property is
taken to be commonly known, there is no point in asking for Bayesian incentive
compatibility at priors that fail this assumption.
I therefore use a weaker concept of robustness. A direct mechanism (q, t1, ..., tn)

is weakly robustly incentive-compatible if it is Bayesian incentive-compatible for
all priors Φ on [0, θ̄]n such that, for some separable metric space Y , some dis-
tribution GΦ on Y, and some measurable mapping y 7−→ FΦ(·|y) from Y to the
space of probability measures on [0, θ̄],

Φ(B) =

∫
Y

(FΦ)n(B|y)dGΦ(y),

for all measurable sets B ⊂ [0, θ̄]n, where (FΦ)n(·|y) is the n-fold product of the
measure FΦ(·|y). Weak robustness implies that the incentive compatibility of a
direct mechanism must not depend on the probability distribution GΦ on Y or
on the mapping y 7−→ FΦ(·|y) from Y to the space of probability measures on
[0, θ̄].

Lemma 4.1 A direct mechanism (q, t1, ..., tn) is weakly robustly incentive-compatible
if and only if it is Bayesian incentive-compatible for all priors Φ on [0, θ̄]n that
take the form Φ = (FΦ)n where (FΦ)n is the n-fold product of the measure FΦ

on [0, θ̄].

As is well known, robust implementability is equivalent to implementabil-
ity in dominant strategies, i.e., a mechanism (q, t1, ..., tn) is robustly incentive-
compatible if and only if truthtelling is a dominant strategy.12 Since weak
robustness is obviously implied by robustness, it follows that any mechanism
that is implementable in dominant strategies is also weakly robustly incentive-
compatible. I do not know whether the converse is also true, i.e. whether weakly
robust incentive compatibility also implies implementability in dominant strate-
gies.
However, with an additional condition of anonymity, weakly robust imple-

mentability of first-best public-good provision rules is incompatible with budget
balance. A direct mechanism (q, t1, ..., tn) is said to be anonymous if q(θ1, ..., θn)
depends only on the cross-section distribution of the preference parameters and,
for any i, ti(θ1, ..., θn) depends only on the preference paramter θi of agent i and
on the distribution of the other agents’preference parameters and, moreover,
the dependence takes the same form for all i.

12See Bergemann and Morris (2005). An application to public-provision is provided in Bier-
brauer and Hellwig (2016). Börgers and Smith (2014) argue that implementability in dominant
strategies is too strong a requirement and propose a weaker concept of undominatedness.
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Proposition 4.2 If n > 2 and q is a first-best public-good provision rule, there
exists no anonymous weakly robustly incentive-compatible direct mechanism that
implements q and also satisfies budget balance.

This proposition parallels a result of Green and Laffont (1979) according
to which dominant-strategy implementability of first-best public-good provision
rules - and hence robust implementability - is incompatible with budget balance.
With weak robustness, rather than robustness, however, the proof is much more
involved, a monster.
The argument exploits the fact that, under a weakly robustly incentive-

compatible direct mechanism, truthtelling is a Bayes-Nash best-response to
truthtelling by other agents under all specifications with unconditionally in-
dependent and identically distributed characteristics, in particular, all speci-
fications involving only three values, θ0, θ1, θ2, of the preference parameters,
where θ0, θ1, θ2 can be specified so that θ0 = 0 < θ1 < K

n < θ2 < K and
θ1+ θ2 > K; with this specification, effi ciency requires that the public good be
provided if at least one participant has the preference parameter θ2 and at least
one other participant has the preference parameter θ1 or θ2.

For any one individual, the characteristics θ0, θ1, θ2 have probabilities
π0, π1, π2, and the best-response property of truthtelling must be independent
of the values of these probabilities. By considering the neighbourhood of the
extreme specification π0 = π1 = 0, π2 = 1, one finds that, if two or more par-
ticipants have the preference parameter θ2, the public good must be provided,
and, under anonymity, budget balance, and Bayes-Nash incentive compatibility,
all participants must pay K

n , i.e., the cost must be shared equally. However,
by considering the neighbourhood of the other extreme specification π0 = 1,
π1 = π2 = 0, one also finds, if no participant has the payoff parameter θ1 and
exactly two participants have the payoff parameter θ2, the payments assigned
to these participants cannot exceed θ1 each, so they do not pay their fair share.
The reason is that, in the given situation, any one of the participants with payoff
parameter θ2 must be discouraged from falsely reporting θ̂ = θ1, which would
not affect the level of public-good provision, and in a situation with exactly one
participant with payoff parameter θ2 and exactly one participant with payoff
parameter θ1, the latter participant’s payment cannot exceed θ1 since otherwise
this participant would prefer to report θ̂ = 0.

5 Robustness, Effi ciency, and Approximate Bud-
get Balance for Large n

How serious is the problem of budget imbalances for weakly robustly incentive-
compatible mechanisms that implement first-best provision rules? For dominant-
strategy-implementation of first-best provision rules, Green and Laffont (1979)
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have suggested that the problem is unimportant when there are many partic-
ipants and preference parameters are independent and identically distributed.
The reason is that, if there are many participants, then, for any one of them,
the probability of being pivotal for the decision on public-good provision is close
to zero, so the associated incentive problem is relatively unimportant.
In the following, I apply this reasoning to the present setting. Indexing vari-

ables and functions by a superscript n for the number of participants, I assume
that, for any n, the random variables θ̃

n

1 , ..., θ̃
n

n are the first n elements of a
sequence {θ̃j}∞j=1 of random variables such that θ̃1, θ̃2, ... are conditionally inde-
pendent and identically distributed given some random variable ỹ with values
in a separable metric space Y.13 I also specify the provision cost so that, for
some k > 0,

Kn = k · n (5.1)

for all n.
I focus on Clarke-Groves mechanisms, which provide for dominant-strategy

implementation without ever running a deficit.14 For any n, the Clarke-Groves
mechanism (qn, tn1 , ..., t

n
n) has a provision rule qn that is first-best and payment

functions tni that satisfy

tni (θn1 , ..., θ
n
n) =

Kn −
∑
j 6=i

θnj

 · qn(θn1 , ..., θ
n
n) + hni (θ−i), (5.2)

where

hni (θ−i) := max
q̂

∑
j 6=i

θnj −
n− 1

n
Kn

 · q̂. (5.3)

One easily verifies that this mechanism is implementable in dominant strategies.
Therefore it is also robustly incentive-compatible and weakly robustly incentive-
compatible.
For given θn1 , ..., θ

n
n, the Clarke-Groves mechanism yields the aggregate bud-

get surplus

Sn(θn1 , ..., θ
n
n) =

n∑
i=1

tni (θn1 , ..., θ
n
n)−Kn · q(θ1, ..., θn)

=

n∑
i=1

max
q̂

∑
j 6=i

θnj −
n− 1

n
Kn

 · q̂ (5.4)

−
n∑
i=1

∑
j 6=i

θnj −
n− 1

n
Kn

 · qn(θn1 , ..., θ
n
n),

13As mentioned in the introduction, with an infinite sequence {θ̃j}∞j=1, this assumption is

equivalent to the assumption that the random variables θ̃1, θ̃2, ... are exchangeable.
14See Clarke (1971), Groves (1973), Green and Laffont (1979).
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which is obviously nonnegative. The surplus is zero if, for every i, qn(θn1 , ..., θ
n
n)

solves the maximization problem in (5.3). It is positive if, for some i, qn(θ1, ..., θn)
fails to solve this maximization problem.
Thus, Sn(θn1 , ..., θ

n
n) > 0 if and only if either

qn(θn1 , ..., θ
n
n) = 1 and

∑
j 6=i

θj <
n− 1

n
Kn for some i (5.5)

or
qn(θn1 , ..., θ

n
n) = 0 and

∑
j 6=i

θj >
n− 1

n
Kn for some i. (5.6)

Given that qn(θn1 , ..., θ
n
n) maximizes the welfare indicator

 n∑
j=1

θnj −Kn

·q with
respect to q, one obtains:

Lemma 5.1 For any n and any (θn1 , ..., θ
n
n) ∈ [0, θ̄]n, the aggregate budget sur-

plus Sn(θn1 , ..., θ
n
n) from the Clarke-Groves mechanism is positive if and only if,

for some i, the expressions
∑
j 6=i

θnj − n−1
n Kn and

n∑
j=1

θnj −Kn have opposite signs.

For the expressions
∑
j 6=i

θnj − n−1
n Kn and

n∑
j=1

θnj −Kn to have opposite signs,

it must be the case that θni − 1
nK

n and
n∑
j=1

θnj −Kn have the same sign and,

moreover, ∣∣∣∣θni − 1

n
Kn

∣∣∣∣ >
∣∣∣∣∣∣
n∑
j=1

θnj −Kn

∣∣∣∣∣∣ . (5.7)

Any agent i for whom (5.7) holds is pivotal for the outcome. For example, if

θni −
1

n
Kn >

n∑
j=1

θnj −Kn > 0, (5.8)

the public good is provided but it would not be provided if agent i reported, say,
the preference parameter θ̂i = 1

nK
n; with such a report, the sum of reported

valuations would be θ̂i +
∑
j 6=i

θnj , which is less than K
n if

∑
j 6=i

θnj <
n−1
n Kn, as

it is if the expressions
∑
j 6=i

θnj − n−1
n Kn and

n∑
j=1

θnj −Kn have opposite signs. A

symmetric consideration applies if the inequalities in (5.8) are reversed.
Lemma 5.1 shows that the Clarke-Groves mechanism earns a surplus if and

only if some agent i is pivotal. From (5.2) and (5.3), one finds that, in any

12



situation, non-pivotal agents only pay 1
nK

n · q(θn1 , ..., θnn), their share of the
provision cost, and pivotal agents pay more. The payments are

tni (θn1 , ..., θ
n
n) =

1

n
Kn + max

0, θni −
1

n
Kn −

∣∣∣∣∣∣
n∑
j=1

θnj −Kn

∣∣∣∣∣∣
 >

1

n
Kn (5.9)

if q(θn1 , ..., θ
n
n) = 1 and

tni (θn1 , ..., θ
n
n) = max

0,−
(
θni −

1

n
Kn

)
−

∣∣∣∣∣∣
n∑
j=1

θnj −Kn

∣∣∣∣∣∣
 > 0 (5.10)

if q(θn1 , ..., θ
n
n) = 0. Surpluses rest entirely on payments from pivotal agents.

I claim that, if n is large, it is unlikely for an individual to be pivotal. For
the specification Kn = k · n, (5.7) can be rewritten as

|θni − k| >

∣∣∣∣∣∣
n∑
j=1

(θnj − k)

∣∣∣∣∣∣ . (5.11)

Since θni belongs to the interval [0, θ̄], (5.11) requires that

θ̄ + k >

∣∣∣∣∣∣
n∑
j=1

(θnj − k)

∣∣∣∣∣∣ , (5.12)

so that the sum
n∑
j=1

(θnj − k) belongs to the compact interval [−(θ̄ + k), θ̄ + k].

For large n, however,
n∑
j=1

(θnj − k) is unlikely to stay bounded in absolute value.

This observation yields

Proposition 5.2 As n goes out of bounds, the aggregate budget surplus from
the Clarke-Groves mechanism in the model with n participants and provision
cost Kn = k · n converges to zero in probability.

The following corollary to Proposition 5.2 recovers the main conclusion of
Green and Laffont (1979) on this subject.

Corollary 5.3 As n goes out of bounds, the expected value of aggregate bud-
get surplus per capita from the Clarke-Groves mechanism in the model with n
participants and provision cost Kn = k · n converges to zero.

For the individual participants’payments, the same argument also yields:
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Corollary 5.4 As n goes out of bounds, for any i, the excess tni (θ̃
n

1 , ..., θ̃
n

n) −
kqn(θ̃

n

1 , ..., θ̃
n

n) of the payment of agent i under the Clarke-Groves mechanism in
the model with n participants and provision cost Kn = k · n over the share of
agent i in the provision cost converges to zero in probability, and the expected
payment Etni (θ̃

n

1 , ..., θ̃
n

n) converges to the provision cost k.

6 Robust First-Best Implementation with Bud-
get Balance in a Large Population

The preceding results suggest that the problem of public-good provision is easi-
est to analyse when the population is large and no one agent is pivotal. Because
no one agent is pivotal, any direct mechanism is robustly incentive-compatible.15

In particular, a mechanism stipulating that the public good be provided if and
only if the cross-section average valuation exceeds the per-capita provision cost
k, with payment functions requiring agents to pay equal shares of the cost, is
robustly incentive-compatible and implements a first-best provision rule. Ac-
cording to the preceding results, such a mechanism can be interpreted as a limit
of Clarke-Groves mechanisms for large finite populations.
Large-population models of public-good provision have not been much stud-

ied, perhaps because of technical issues. With a large population, the effi ciency
condition in the preceding paragraph depends on the comparison of the per-
capita provision cost k with the average∫

A

θ̃(ω, a)dα(a), (6.1)

A is the space of agents and α is a measure on A. The preceding paragraph
presumes that, in the large population, the cross-section average (6.1) is always
well defined. Whether this presumption is justified depends on how the domain
of the measure α is specified.
For example, if A is the Lebesgue unit interval and, conditionally on the

aggregate shock ỹ, the random variables θ̃(·, a), a ∈ A, are independent, then
either the integral in (6.1) is almost surely undefined or, conditionally on ỹ,
the random variables θ̃(·, a), a ∈ A, are degenerate so that θ̃(·, a) = θ∗(ỹ(·))
with probability one.16 This dilemma can be avoided, however, if the algebra
of measurable subsets of A and the algebra of measurable subsets of Ω×A are
suitably enlarged.17 When this is done, the cross-section average (6.1) is well

15See Proposition 1 in Hellwig (2021).
16Hammond and Sun (2008), Qiao et al. (2016).
17For details, see Sun (2006), Qiao et al. (2016), Hellwig (forthcoming). The σ-algebra on

Ω×A must be a Fubini extension of the standard product σ-algebra, so that, for any bounded
measurable function f on Ω×A, the mappings

ω →
∫
A
f(ω, a)dα(a) and a→

∫
Ω
f(ω, a)dP (ω)
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defined with probability one. Moreover, if, for α-almost all a and a′ in A, the
random variables θ̃(·, a) and θ̃(·, a′) are conditionally independent given ỹ, a
conditional exact law of large numbers ensures that∫

A

θ̃(ω, a)dα(a) = θ∗(ỹ(ω)) (6.2)

with probability one where, as before θ∗(ỹ) is the common value of the condi-
tional expectation E[θ̃(·, a)|ỹ].18 Thus a decision rule driven by the comparison
of (6.1) with k effectively turns on the comparison of the conditional expectation
θ∗(ỹ(·)) with k.
In the large-economy version of the model, individual uncertainty plays no

role. Information about the macro variable ỹ and about θ∗(ỹ) is all that matters
for effi cient public-good provision. In the absence of coalitions coordinating their
members’behaviours, there is no problem in obtaining this information through
a robustly individually incentive-compatible direct mechanism with budget bal-
ance.19

are well-defined and measurable and, moreover, the Fubini equation∫
Ω

∫
A
f(ω, a)dα(a)dP (ω) =

∫
A

∫
Ω
f(ω, a)dP (ω)dα(a)

holds. Moreover, it must be rich, i.e., there must exist a measurable function h from Ω × A
to the unit interval such that, for α-almost all a ∈ A, the random variable h(·, a) has a
uniform distribution and, for α-almost all a and a′, the random variables h(·, a) and h(·, a′)
are independent. Existence of a rich Fubini extension is compatible with A = [0, 1] provided
the algebra of measurable subsets of A is suitably enlarged, relative to the Lebesgue σ.algebra.
See Sun and Zhang (2009).
18See Qiao et al. (2016).
19Bierbrauer and Hellwig (2015) and Hellwig (2021) show that, whereas in a large popu-

lation robust individual incentive compatibility is trivially satisfied, a requirement of robust
coalition incentice compatibility imposes serious constraints, not on the information that can
be obtaines, but on the uses that can be made of this information.
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A Proofs

Proposition 2.1 needs no proof because it merely restates the cited result of
Güth and Hellwig (1986)

Proof of Proposition 2.2. Let (q, t1, ..., tn) be as specified in the proposition.
By (2.12), the function Qi that is defined by (2.5) satisfies (2.14). By (2.10),

Ti(θ̂i|ŷ) :=

∫
[0,θ̄]n−1

ti(θ̂i,θ−i|ŷ) dFn−1(θ−i)

for all i, θ̂i, and ŷ, so the function Ti that is defined by (2.6) satisfies (2.15).
The expected net payoff (2.4) that agent i obtains from reporting θ̂i when the
true preference parameter is θi is therefore equal to

θi ·Qi(θ̂i, θi)− Ti(θ̂i, θi) =

∫
Y

[
θi ·Qi(θ̂i|ŷ)− Ti(θ̂i|ŷ)

]
dG(ŷ|θi). (A.1)

Incentive compatibility follows because, for any ŷ ∈ Y, the integrand in (A.1) is
maximized by setting θ̂i = θi.

Proof of Proposition 3.1. The first statement of the proposition follows
from Proposition 2.2 and the observation that any first-best provision rule q is
nondecreasing in θ1, ..., θn. For the second statement, use (2.13) to obtain

n∑
i=1

ti(θ1, ..., θn) =

∫
Y

n∑
i=1

ti(θ1, ..., θn|ŷ) dG(ŷ). (A.2)

For any ŷ ∈ Y, (2.10) implies
n∑
i=1

ti(θ1, ..., θn|ŷ)

=

n∑
i=1

Ti(θi|ŷ) +K · q(θ1, ..., θn)− 1

n

n∑
i=1

∫
K · q(θi, θ̂−i)) dFn−1(θ̂−i|ŷ)

− 1

n− 1

n∑
i=1

∑
j 6=i

[
Tj(θj |ŷ)−

∫
Tj(θ

′
j |ŷ) dF (θ′j |ŷ)

]

+
1

n− 1

n∑
i=1

∑
j 6=i

1

n

[∫
K · (q(θj ,θ′−j) dFn−1(θ′−j |ŷ)−

∫
K · q(θ̂) dFn(θ̂|ŷ)

]

= K · q(θ1, ..., θn) +

n∑
j=1

∫
Tj(θ

′
j |ŷ) dF (θ′j |ŷ)−

∫
K · q(θ̂) dFn(θ̂|ŷ). (A.3)

The budget balance condition (3.2) is satisfied if the constants Tj(0|ŷ) are
arranged so that
n∑
j=1

Tj(0|ŷ) +

n∑
j=1

∫
[Tj(θ

′
j |ŷ)− Tj(0|ŷ)] dF (θ′j |ŷ) =

∫
K · q(θ̂) dFn(θ̂|ŷ) (A.4)
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for all ŷ ∈ Y, taking account of the fact that the differences Tj(θ′j |ŷ) − Tj(0|ŷ)
are determined by (2.11) and the provision rule q.

Proof of Lemma 4.1. Suppose that the direct mechanism (q, t1, ..., tn) is
weakly robustly incentive-compatible. Let Φ be any prior of the form Φ = (FΦ)n.
Let Y,G, and the mapping y 7−→ F (·|y) be such that F (·|y) = FΦ for all y.
Then trivially (q, t1, ..., tn) is Bayesian incentive-compatible for Φ.
Conversely, suppose that (q, t1, ..., tn) is Bayesian incentive-compatible for

any prior taking the form Fn. Then, trivially, (q, t1, ..., tn) is also Bayesian
incentive-compatible for any prior taking the form

∫
Y
Fn(·|y)dG(y), for any

Y, any G, and any mapping y 7−→ F (·|y) from Y to the space of probability
measures on [0, θ̄].

Proof of Proposition 4.2. The proof proceeds indirectly. Suppose that
(q, t1, ..., tn) is an anonymous weakly robustly incentive-compatible direct mech-
anism that implements q and also satisfies the balanced-budget condition (3.2)
for all (θ1, ..., θn) ∈ [0, θ̄]n. With an abuse of notation, I write q(θ̂|D) and
t(θ̂, D) for the public-good provision level and the contribution made by a par-
ticular agent if that agent announces the value θ̂ of his preference parameter
and the distribution of the other agents’preference parameters is equal to D.
Notice that the preference parameter of the agent in question does not enter the
calculation of the distribution D.
Lemma 4.1 implies that, for every probability measure F on [0, θ̄], the mecha-

nism (q, t1, ..., tn) is Bayesian incentive-compatible if the participants’character-
istics are independent and identically distributed with the common distribution
F. I consider the implications of this statement for probability distributions F
whose support is set {θ0, θ1, θ2} such that

θ0 = 0, θ1 =
1

2n
·K, θ2 = K − 1

4n
·K. (A.5)

Any such probability distribution is characterized by the probabilities π0, π1, π2

that it assigns to the points θ0, θ1, θ2, where π2 = 1−π0−π1. Similarly, any cross-
section distribution D of preference parameters of other agents is characterized
by the numbers m0,m1,m2 of other agents that have preference parameters
θ0, θ1, θ2.
Given an arbitrary triple (π0, π1, π2) of probabilities assigned to the points

θ0, θ1, θ2distribution, Bayesian incentive compatibility requires that, for any θi,
the report θ̂(θi) = θi maximizes the objective∑
m0,m1,m2

(n− 1)!

m0!m1!m2!
· πm0

0 πm1
1 πm2

2 ·
[
θi · q(θ̂|m0,m1,m2)− t(θ̂|m0,m1,m2)

]
,

(A.6)
where the sum is taken over all triples (m0,m1,m2) such that m0,m1,m2 add
up to n− 1, the number of other agents.

By (3.1), the assumption that q is a first-best provision rule implies that

q(θ̂|m0,m1,m2) = 1 if θ̂ + (θ1 ·m1 + θ2 ·m2) ·K > K (A.7)
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and
q(θ̂|m0,m1,m2) = 0 if θ̂ + (θ1 ·m1 + θ1 ·m2) ·K < K. (A.8)

In particular, by (A.5) and anonymity,

q(θ0|n− 3, 0, 2) = q(θ2|n− 2, 0, 1) = 1. (A.9)

For this constellation, budget balance requires that

(n− 2) · t(θ0|n− 3, 0, 2) + 2 · t(θ2|n− 2, 0, 1) = K. (A.10)

I will however prove that

t(θ0|n− 3, 0, 2) =
K

n
(A.11)

and
t(θ2|n− 2, 0, 1) ≤ θ1. (A.12)

By (A.5), (A.11) and (A.12) imply

(n− 2) · t(θ0|n− 3, 0, 2) + 2 · t(θ2|n− 2, 0, 1) ≤ n− 1

n
·K, (A.13)

so that the budget-balance condition (A.10) cannot hold.
I give separate arguments for the inequalities (A.11) and (A.12).
Proof of (A.11). I will prove the more general claim that, if n > 2, then,

for any r ∈ {0, ..., n− 3} and any θ̂ ∈ {θ0, θ1, θ2},

q(θ̂|r, 0, n− 1− r) = 1 (A.14)

and

t(θ̂|r, 0, n− 1− r) =
K

n
. (A.15)

From this more general claim, (A.11) follows because this equation is a special
case of (A.15), with r = n− 3 and θ̂ = θ0.

To prove that (A.14) must hold for all r ∈ {0, ..., n − 3} and all θ̂ ∈
{θ0, θ1, θ2}, it suffi ces to observe that, for θ̂ ∈ {θ0, θ1, θ2}, m0 = r,m1 = 0,
and m2 = n− 1− r,

θ̂ + θ1m1 + θ2m2 ≥ θ2(n− 1− (n− 3)) ≥ θ2 · 2 > K,

so (A.14) follows from (A.7).
I next prove that (A.15) must hold for all r ∈ {0, ..., n − 3} and all θ̂ ∈

{θ0, θ1, θ2}. Weak robustness requires that, for any θi, the report θ̂ = θi maxi-
mizes the expression (A.6), regardless of the probabilities π0, π1, π2. In particu-
lar, this report maximizes (A.6) if π1 = 0, regardless of π0 and π2. For π1 = 0,
(A.6) takes the form∑

m0,m2

(n− 1)!

m0!m2!
· πm0

0 πm2
2 ·

[
θi · q(θ̂|m0, 0,m2)− t(θ̂|m0, 0,m2)

]
. (A.16)
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I now proceed by induction on r, beginning with r = 0. By weak robustness,
for any θi, the report θ̂ = θi maximizes the expression (A.16), regardless of π0

and π2. In particular, this report maximizes (A.16) when π0 = 0 and π2 = 1.
In this case, (A.16) takes the form

θi · q(θ̂|0, 0, n− 1)− t(θ̂|0, 0, n− 1) = θi − t(θ̂|0, 0, n− 1), (A.17)

where the last equation follows from (A.14). For θ̂ = θi to maximize (A.17) for
all θi ∈ {θ0, θ1, θ2}, it must be the case that t(θ̂|0, 0, n− 1) is independent of θ̂.
Moreover, by anonymity and budget balance, t(θ2|0, 0, n− 1) = K

n . Thus,

t(θ̂|0, 0, n− 1) =
K

n
for all θ̂ ∈ {θ0, θ1, θ2}, (A.18)

which is just (A.15) for r = 0.
For the induction step of the argument, suppose that (A.15) has been shown

to be true for r′ ∈ {0, ..., r}. Then in (A.16), the terms involving m0 ∈ {0, ..., r},
and m2 = n − 1 −m0 are all independent of θ̂, being proportional to θ

i − K
n .

Therefore, these terms play no role in the maximization of (A.16), i.e., for any
θi and any π0 and π2 = 1− π0, a maximizer θ̂(θi) of (A.16) is also a maximizer
of ∑

m0>r,
m2=n−1−m0

(n− 1)!

m0!m2!
· πm0

0 πm2
2 ·

[
θi · q(θ̂|m0, 0,m2)− t(θ̂|m0, 0,m2)

]
. (A.19)

If π0 > 0 and π1 = 0, maximization of (A.19) in turn is equivalent to the
maximization of∑

m0>r,
m2=n−1−m0

(n− 1)!

m0!m2!
·πm0−1

0 πm2
2 ·

[
θi · q(θ̂|m0, 0,m2)− t(θ̂|m0, 0,m2)

]
. (A.20)

For π0 = ∆ and π2 = 1−∆, if ∆ ↓ 0, then, for any θi and any θ̂ in {θ0, θ1, θ2},
expression (A.20) converges to

(n− 1)!

r + 1!(n− r − 2)!
· [θi · q(θ̂|r+ 1, 0, n− r− 2)− t(θ̂|r+ 1, 0, n− r− 2)]. (A.21)

By the maximum theorem, the assumption that, regardless of θi ∈ {θ0, θ1, θ2},
setting θ̂(θi) = θi maximizes (A.20) for π0 = ∆ > 0 and π2 = 1−∆ < 1 implies
that, regardless of θi ∈ {θ0, θ1, θ2}, setting θ̂(θi) = θi maximizes (A.21), the
limit of (A.20) as ∆ ↓ 0.
Along the same lines as before, I note that, since n > r, (A.5) and (A.7)

imply that q(θ̂|r + 1, 0, n− r − 2) = 1, regardless of θ̂ ∈ {θ0, θ1, θ2}. For θ̂ = θi

to maximize (A.21) for all θi ∈ {θ0, θ1, θ2}, it must therefore be the case that
t(θ̂|r+ 1, 0, n− r− 2) is independent of θ̂. Moreover, by anonymity and budget
balance,t(θ2|r + 1, 0, n− r − 2) = K

n . Thus,

t(θ̂|r + 1, 0, n− r − 2) =
K

n
for all θ̂ ∈ {θ0, θ1, θ2}, (A.22)
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and the induction is complete.
Proof of (A.12). I first note that, for π0 = 1, π1 = π2 = 0, expression

(A.6) takes the form

θi · q(θ̂|n− 1, 0, 0)− t(θ̂|n− 1, 0, 0). (A.23)

For m0 = n− 1 and m1 = m2 = 0,

θ̂ + θ1m1 + θ2m2 = θ̂ < K,

regardless of θ̂ so (A.8) implies

q(θ̂|n− 1, 0, 0) = 0 (A.24)

for all θ̂ ∈ {θ0, θ1, θ2}. Thus,

θi · q(θ̂|n− 1, 0, 0)− t(θ̂|n− 1, 0, 0) = −t(θ̂|n− 1, 0, 0). (A.25)

For θ̂(θi) = θi to maximize (A.23), for all θi ∈ {θ0, θ1, θ2}, it must therefore
be the case that t(θ̂|n − 1, 0, 0) is independent of θ̂. By anonymity and budget
balance, t(θ0|n− 1, 0, 0) = 0. Therefore

t(θ̂|n− 1, 0, 0) = 0 (A.26)

for all θ̂ ∈ {θ0, θ1, θ2}.
Thus, expression (A.23) is equal to zero, regardless of θ̂. Expression (A.6)

can therefore be rewritten as∑
m0<n−1,m1,m2

(n− 1)!

m0!m1!m2!
·πm0

0 πm1
1 πm2

2 ·
[
θi · q(θ̂|m0,m1,m2)− t(θ̂|m0,m1,m2)

]
,

(A.27)
where the sum is taken over all m0 < n− 1,m1, and m2 such that m0,m1,m2

add up to n − 1. For π2 > 0, regardless of θi, expression (A.27) is maximized
by the same θ̂ as the expression∑
m0<n−1,m1,m2

(n− 1)!

m0!m1!m2!
·πm0

0 πm1
1 πm2−1

2 ·
[
θi · q(θ̂|m0,m1,m2)− t(θ̂|m0,m1,m2)

]
(A.28)

For π0 = 1 −∆1 −∆2, π1 = ∆1 > 0 and π2 = ∆2 > 0, if ∆1 ↓ 0 and ∆2 ↓ 0,
then, for any θi and any θ̂ in {θ0, θ1, θ2}, expression (A.28) converges to

(n− 1) · [θi · q(θ̂|n− 2, 0, 1)− t(θ̂|n− 2, 0, 1)]. (A.29)

By the maximum theorem, the assumption that, regardless of θi ∈ {θ0, θ1, θ2},
setting θ̂(θi) = θi maximizes (A.28) for π0 = 1 − ∆1 − ∆2, π1 = ∆1 > 0 and
π2 = ∆2 > 0 implies that, regardless of θi ∈ {θ0, θ1, θ2}, setting θ̂(θi) = θi

maximizes (A.29), the limit of (A.28) as ∆1 ↓ 0 and ∆2 ↓ 0.
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By (A.8) and (A.7), in combination with (A.5),

q(θ̂|n− 2, 0, 1) = 0 if θ̂ = θ0 (A.30)

and
q(θ̂|n− 2, 0, 1) = 1 if θ̂ ∈ {θ1, θ2}. (A.31)

By anonymity and (A.26), it must also be the case that

t(θ0|n− 2, 0, 1) = t(θ2|n− 1, 0, 0) = 0, (A.32)

so for θ̂ = 0, the maximand (A.29) is equal to zero, regardless of θi.
For θ̂(θi) = θi to be maximizing (A.29) when θi = θ1 and θi = θ2, it must

be the case that

θ1 ·q(θ1|n−2, 0, 1)−t(θ1|n−2, 0, 1) ≥ θ1 ·q(θ0|n−2, 0, 1)−t(θ0|n−2, 0, 1) (A.33)

and

θ2·q(θ2|n−2, 0, 1)−t(θ2|n−2, 0, 1) ≥ θ2·q(θ1|n−2, 0, 1)−t(θ1|n−2, 0, 1). (A.34)

Upon combining (A.33) with (A.30) and (A.32), one obtains

t(θ1|n− 2, 0, 1) ≤ θ1. (A.35)

Upon combining (A.34) with (A.35), one obtains (A.12). This completes the
proof of Proposition 4.2.

Proof of Proposition 5.2. Let (Ω,F , P ), with generic element ω, be the
underlying probability space on which all random variables are defined. The
proposition claims that, as n→∞, the probability of the event

{ω ∈ Ω| S̃n(ω) > 0}

goes to zero, where
S̃n := Sn(θ̃1, ..., θ̃n). (A.36)

By Lemma 5.1 and (5.12),

{ω ∈ Ω| S̃n(ω) > 0} ⊂

ω ∈ Ω|

∣∣∣∣∣∣
n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ < θ̄ + k

 .

Thus it suffi ces to show that, as n→∞,

P

ω ∈ Ω|

∣∣∣∣∣∣
n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ < θ̄ + k


→ 0. (A.37)

Let θ∗(ỹ) be the common conditional expectation of the random variables
θ̃1, θ̃2, ... given ỹ. I will give separate arguments for the case where θ

∗(ỹ) 6= k
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with probability one, the case where θ∗(ỹ) = k with probability one, and the
case where both events, θ∗(ỹ) 6= k and θ∗(ỹ) = k, have positive probabilities.
Case 1: θ∗(ỹ) 6= k with probability one.
The sequence θ̃1, θ̃2, ... satisfies the conditions for the strong law of large

numbers for conditionally independent and identically distributed random vari-
ables, as stated in Beck (1974). As n→∞, therefore

1

n

n∑
j=1

[θ̃j − θ∗(ỹ)]→ 0, almost surely, (A.38)

and hence
1

n

n∑
j=1

[θ̃j − k]→ θ∗(ỹ)− k, almost surely. (A.39)

If θ∗(ỹ) 6= k with probability one, it follows that∣∣∣∣∣∣
n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣→∞, almost surely,

and, hence, that, for almost every ω ∈ Ω, there exists N(ω) such that, for
n > N(ω), ∣∣∣∣∣∣

n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ > θ̄ + k.

(A.37) follows immediately.20

Case 2: θ∗(ỹ) = k with probability one.
The sequence θ̃1, θ̃2, ... satisfies the conditions for the central limit theorem

for conditionally independent and identically distributed random variables, as
stated in Yuan et al. (2014). Therefore there exists a normal distributed random
variable X̃ with EX̃ = 0, such that, as n→∞,

1

n
1
2

n∑
j=1

[θ̃j − θ∗(ỹ)]→ X̃ in distribution. (A.40)

Thus, for any ∆ > 0,

P

ω ∈ Ω|

∣∣∣∣∣∣ 1

n
1
2

n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ < ∆


→ Φ((−∆,+∆)),

20For the case θ∗(ỹ) 6= k with probability one, the argument given actually shows that
S̃n → 0 with probability one as n→∞.
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as n → ∞, where Φ is the measure associated with the normal distribution.
Notice that

P

ω ∈ Ω|

∣∣∣∣∣∣
n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ < θ̄ + k




= P

ω ∈ Ω|

∣∣∣∣∣∣ 1

n
1
2

n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ < 1

n
1
2

(θ̄ + k)




and that, for any ∆ > 0 and any suffi ciently large n,

1

n
1
2

(θ̄ + k) < ∆.

For any ∆ > 0, therefore,

lim supP

ω ∈ Ω|

∣∣∣∣∣∣
n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ < θ̄ + k


 ≤ Φ((−∆,+∆)).

Upon taking limits as ∆ ↓ 0, one obtains

lim supP

ω ∈ Ω|

∣∣∣∣∣∣
n∑
j=1

(θ̃j(ω)− k)

∣∣∣∣∣∣ < θ̄ + k


 = 0.

Again, (A.37) follows immediately.
Case 3: θ∗(ỹ) 6= k with positive probability and θ∗(ỹ) = k with

positive probability.
To conclude the proof, consider the general case, where both events, θ∗(ỹ) 6=

k and θ∗(ỹ) = k, have positive probabilities. Given the probability distribution
G of the random variable ỹ, let G6= and G= be regular conditional distributions
for ỹ conditional on the events θ∗(ỹ) 6= k and θ∗(ỹ) = k. Define random variables
ỹ6= and ỹ= on (Ω,z, P ) such that ỹ 6= has the distribution G6= and ỹ= has the dis-

tribution G=. Define preference parameter processes, θ̃
6=
1 , θ̃

6=
2 , ... and θ̃

=

1 , θ̃
=

2 , ...,

such that the random variables θ̃
6=
1 , θ̃

6=
2 , ... are conditionally independent and

identically distributed given ỹ 6=, the random variables θ̃
=

1 , θ̃
=

2 , ... are condition-
ally independent and identically distributed given ỹ=, and moreover, for any

y ∈ Y and j = 1, 2, ..., the probability distribution of θ̃
6=
j conditional on the

event ỹ6= = y or of θ̃
=

j conditional on the event ỹ= = y is given by F (·|y). The

random variables ỹ6=, θ̃
6=
1 , θ̃

6=
2 , ... define an incomplete-information model with

θ∗(ỹ6=) 6= k almost surely, and the random variables ỹ=, θ̃
=

1 , θ̃
=

2 , ... define an
incomplete-information model with θ∗(ỹ 6=) 6= k almost surely. The arguments
for Cases 1 and 2 imply that in each of these models, the aggregate budget
surplus from the Clarke-Groves mechanism converges to zero in probability as
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n goes out of bounds. The desired result follows from the observation that the
probability distribution of the aggregate budget surplus in the original model
is a mixture, with weights G({y ∈ Y |θ∗(y) 6= k}) and G({y ∈ Y |θ∗(y) = k}),
of the probability distributions of the aggregate budget surpluses in the models

with random variables ỹ6=, θ̃
6=
1 , θ̃

6=
2 , ... and with random variables ỹ=, θ̃

=

1 , θ̃
=

2 , ....

Proof of Corollary 5.3. By Proposition 5.2 and Lebesgue’s Bounded Con-
vergence Theorem, it suffi ces to show that 1

n · S̃
n is uniformly bounded. From

(5.9) and (5.10), one obtains

S̃n =

n∑
i=1

max

0, θ̃
n

i − k −

∣∣∣∣∣∣
n∑
j=1

(θnj − k)

∣∣∣∣∣∣


if qn(θ̃
n

1 , ..., θ
n
n) = 1 and

S̃n =

n∑
i=1

max

0,− (θni − k)−

∣∣∣∣∣∣
n∑
j=1

(θnj − k)

∣∣∣∣∣∣


if qn(θ̃
n

1 , ..., θ
n
n) = 0. In either case,

S̃n ≤
n∑
i=1

max
(

0, θ̃
n

i − k
)
≤ n · (θ̄ + k),

hence 1
n · S̃

n ≤ θ̄ + k.
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